ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

Related tags

Deep LearningISTR
Overview

This is the project page for the paper:

ISTR: End-to-End Instance Segmentation via Transformers,
Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wang, Ke Li, Feiyue Huang, Ling Shao, Rongrong Ji,
arXiv 2105.00637

Highlights:

  • GPU Friendly: Four 1080Ti/2080Ti GPUs can handle the training for R50, R101 backbones with ISTR.
  • High Performance: On COCO test-dev, ISTR-R50-3x gets 46.8/38.6 box/mask AP, and ISTR-R101-3x gets 48.1/39.9 box/mask AP.

Updates

  • (2021.05.03) The project page for ISTR is avaliable.

Models

Method inf. time box AP mask AP download
ISTR-R50-3x 17.8 FPS 46.8 38.6 model | log
ISTR-R101-3x 13.9 FPS 48.1 39.9 model | log
  • The inference time is evaluated with a single 2080Ti GPU.
  • We use the models pre-trained on ImageNet using torchvision. The ImageNet pre-trained ResNet-101 backbone is obtained from SparseR-CNN.

Installation

The codes are built on top of Detectron2, SparseR-CNN, and AdelaiDet.

Requirements

  • Python=3.8
  • PyTorch=1.6.0, torchvision=0.7.0, cudatoolkit=10.1
  • OpenCV for visualization

Steps

  1. Install the repository (we recommend to use Anaconda for installation.)
conda create -n ISTR python=3.8 -y
conda activate ISTR
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
pip install opencv-python
pip install scipy
pip install shapely
git clone https://github.com/hujiecpp/ISTR.git
cd ISTR
python setup.py build develop
  1. Link coco dataset path
ln -s /coco_dataset_path/coco ./datasets
  1. Train ISTR (e.g., with ResNet50 backbone)
python projects/ISTR/train_net.py --num-gpus 4 --config-file projects/ISTR/configs/ISTR-R50-3x.yaml
  1. Evaluate ISTR (e.g., with ResNet50 backbone)
python projects/ISTR/train_net.py --num-gpus 4 --config-file projects/ISTR/configs/ISTR-R50-3x.yaml --eval-only MODEL.WEIGHTS ./output/model_final.pth
  1. Visualize the detection and segmentation results (e.g., with ResNet50 backbone)
python demo/demo.py --config-file projects/ISTR/configs/ISTR-R50-3x.yaml --input input1.jpg --output ./output --confidence-threshold 0.4 --opts MODEL.WEIGHTS ./output/model_final.pth

Citation

If our paper helps your research, please cite it in your publications:

@article{hu2021ISTR,
  title={ISTR: End-to-End Instance Segmentation via Transformers},
  author={Hu, Jie and Cao, Liujuan and Lu, Yao and Zhang, ShengChuan and Li, Ke and Huang, Feiyue and Shao, Ling and Ji, Rongrong},
  journal={arXiv preprint arXiv:2105.00637},
  year={2021}
}
Owner
Jie Hu
Phd Student, Xiamen University.
Jie Hu
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat

Dominik Schmidt 31 Dec 21, 2022
PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Introduction We introduce the task of dense captioning in 3D scans from commodity RGB-D sensor

Dave Z. Chen 79 Nov 07, 2022
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
Caffe: a fast open framework for deep learning.

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berke

Berkeley Vision and Learning Center 33k Dec 28, 2022
A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

CoAtNet Overview This is a PyTorch implementation of CoAtNet specified in "CoAtNet: Marrying Convolution and Attention for All Data Sizes", arXiv 2021

Justin Wu 268 Jan 07, 2023
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
Text and code for the forthcoming second edition of Think Bayes, by Allen Downey.

Think Bayes 2 by Allen B. Downey The HTML version of this book is here. Think Bayes is an introduction to Bayesian statistics using computational meth

Allen Downey 1.5k Jan 08, 2023
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

1-bit Wide ResNet PyTorch implementation of training 1-bit Wide ResNets from this paper: Training wide residual networks for deployment using a single

Sergey Zagoruyko 122 Dec 07, 2022
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs

GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs GraphLily is the first FPGA overlay for graph processing. GraphLily supports a rich se

Cornell Zhang Research Group 39 Dec 13, 2022
Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors

-IEEE-TIM-2021-1-Shallow-CNN-for-HAR [IEEE TIM 2021-1] Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors All

Wenbo Huang 1 May 17, 2022
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.

Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl

idealo 4k Jan 08, 2023