A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Overview

Continuous Wasserstein-2 Benchmark

This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2 Benchmark (paper on arxiv) by Alexander Korotin, Lingxiao Li, Aude Genevay, Justin Solomon, Alexander Filippov and Evgeny Burnaev.

The repository contains a set of continuous benchmark measures for testing optimal transport solvers for quadratic cost (Wasserstein-2 distance), the code for optimal transport solvers and their evaluation.

Citation

@article{korotin2021neural,
  title={Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2 Benchmark},
  author={Korotin, Alexander and Li, Lingxiao and Genevay, Aude and Solomon, Justin and Filippov, Alexander and Burnaev, Evgeny},
  journal={arXiv preprint arXiv:2106.01954},
  year={2021}
}

Pre-requisites

The implementation is GPU-based. Single GPU (~GTX 1080 ti) is enough to run each particular experiment. Tested with

torch==1.3.0 torchvision==0.4.1

The code might not run as intended in newer torch versions.

Related repositories

Loading Benchmark Pairs

from src import map_benchmark as mbm

# Load benchmark pair for dimension 16 (2, 4, ..., 256)
benchmark = mbm.Mix3ToMix10Benchmark(16)
# OR load 'Early' images benchmark pair ('Early', 'Mid', 'Late')
# benchmark = mbm.CelebA64Benchmark('Early')

# Sample 32 random points from the benchmark measures
X = benchmark.input_sampler.sample(32)
Y = benchmark.output_sampler.sample(32)

# Compute the true forward map for points X
X.requires_grad_(True)
Y_true = benchmark.map_fwd(X, nograd=True)

Repository structure

All the experiments are issued in the form of pretty self-explanatory jupyter notebooks (notebooks/). Auxilary source code is moved to .py modules (src/). Continuous benchmark pairs are stored as .pt checkpoints (benchmarks/).

Evaluation of Existing Solvers

We provide all the code to evaluate existing dual OT solvers on our benchmark pairs. The qualitative results are shown below. For quantitative results, see the paper.

Testing Existing Solvers On High-Dimensional Benchmarks

  • notebooks/MM_test_hd_benchmark.ipynb -- testing [MM], [MMv2] solvers and their reversed versions
  • notebooks/MMv1_test_hd_benchmark.ipynb -- testing [MMv1] solver
  • notebooks/MM-B_test_hd_benchmark.ipynb -- testing [MM-B] solver
  • notebooks/W2_test_hd_benchmark.ipynb -- testing [W2] solver and its reversed version
  • notebooks/QC_test_hd_benchmark.ipynb -- testing [QC] solver
  • notebooks/LS_test_hd_benchmark.ipynb -- testing [LS] solver

Testing Existing Solvers On Images Benchmark Pairs (CelebA 64x64 Aligned Faces)

  • notebooks/MM_test_images_benchmark.ipynb -- testing [MM] solver and its reversed version
  • notebooks/W2_test_images_benchmark.ipynb -- testing [W2]
  • notebooks/MM-B_test_images_benchmark.ipynb -- testing [MM-B] solver
  • notebooks/QC_test_images_benchmark.ipynb -- testing [QC] solver

[LS], [MMv2], [MMv1] solvers are not considered in this experiment.

Generative Modeling by Using Existing Solvers to Compute Loss

Warning: training may take several days before achieving reasonable FID scores!

  • notebooks/MM_test_image_generation.ipynb -- generative modeling by [MM] solver or its reversed version
  • notebooks/W2_test_image_generation.ipynb -- generative modeling by [W2] solver

For [QC] solver we used the code from the official WGAN-QC repo.

Training Benchmark Pairs From Scratch

This code is provided for completeness and is not intended to be used to retrain existing benchmark pairs, but might be used as the base to train new pairs on new datasets. High-dimensional benchmak pairs can be trained from scratch. Training images benchmark pairs requires generator network checkpoints. We used WGAN-QC model to provide such checkpoints.

  • notebooks/W2_train_hd_benchmark.ipynb -- training high-dimensional benchmark bairs by [W2] solver
  • notebooks/W2_train_images_benchmark.ipynb -- training images benchmark bairs by [W2] solver

Credits

Owner
Alexander
PhD Student (Computer Science) at Skolkovo University of Science and Technology (Moscow, Russia)
Alexander
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Systems Research at ShiftLab 14 Jul 24, 2022
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A

Muzammal Naseer 47 Dec 02, 2022
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Zhiqiang Shen 52 Dec 24, 2022
Pytorch domain adaptation package

DomainAdaptation This package is created to tackle the problem of domain shifts when dealing with two domains of different feature distributions. In d

Institute of Computational Perception 7 Oct 22, 2022
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
Open CV - Convert a picture to look like a cartoon sketch in python

Use the video https://www.youtube.com/watch?v=k7cVPGpnels for initial learning.

Sammith S Bharadwaj 3 Jan 29, 2022
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
Submodular Subset Selection for Active Domain Adaptation (ICCV 2021)

S3VAADA: Submodular Subset Selection for Virtual Adversarial Active Domain Adaptation ICCV 2021 Harsh Rangwani, Arihant Jain*, Sumukh K Aithal*, R. Ve

Video Analytics Lab -- IISc 13 Dec 28, 2022
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis ∆-Conformity is a local homophily measur

2 Jan 09, 2022