GAN-based 3D human pose estimation model for 3DV'17 paper

Overview

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation".

@inproceedings{jack2017adversarially,
  title={Adversarially Parameterized Optimization for 3D Human Pose Estimation},
  author={Jack, Dominic and Maire, Frederic and Eriksson, Anders and Shirazi, Sareh},
  booktitle={3D Vision (3DV), 2017 Fifth International Conference on},
  year={2017},
  organization={IEEE}
}

Code used to generate results for the paper has been frozen and can be found in the 3dv2017 branch. Bug fixes and extensions will be applied to other branches.

Algorithm Overview

The premise of the paper is to train a GAN to simultaneously learn a parameterization of the feasible human pose space along with a feasibility loss function.

During inference, a standard off-the-shelf optimizer infers all poses from sequence almost-independently (the scale is shared between frames, which has no effect on the results (since errors are on the procruste-aligned inferences which optimize over scale) but makes the visualizations easier to interpret).

Repository Structure

Each GAN is identified by a gan_id. Hyperparameters defining the network structures and datasets from which they should be trained are specified in gan_params/gan_id.json. A couple (those with results highlighted in the paper) are provided, h3m_big, h3m_small and eva_big. Note that compared to typical neural networks, these are still tiny, so the difference in size should result in a negligible difference in training/inference time.

Similarly, each inference run is identified by an inference_id, the parameters of which are defined in inference_params/inference_id.json. including geometric transforms, visualizations and dataset reading

  • gan: provides application-specific GANs based on specifications in gan_params
  • serialization.py: i/o related functions for loading hyper-parameters/results

Scripts:

  • train.py: Trains a GAN specified by a json file in gan_params
  • gan_generator_vis.py: visualization script for a trained GAN generator
  • interactive_gan_generator_vis.ipynb: interactive jupyter/ipython notebook for visualizing a trained GAN generator
  • generate_inferences.py: Generates inferences based on parameters specified by a json file in inference_params
  • h3m_report.py/eva_report.py: reporting scripts for generated inferences.
  • vis_sequecne.py: visualization script for entire inferred sequence.

Usage

  1. Setup the external repositories: * human_pose_util
  2. Clone this repository and add the location and the parent directory(s) to your PYTHONPATH
cd path/to/parent_folder
git clone https://github.com/jackd/adversarially_parameterized_optimization.git
git clone https://github.com/jackd/human_pose_util.git
export PYTHONPATH=/path/to/parent_folder:$PYTHONPATH
cd adversarially_parameterized_optimization
  1. Define a GAN model by creating a gan_params/gan_id.json file, or select one of the existing ones.
  2. Setup the relevant dataset(s) or create your own as described in human_pose_util.
  3. Train the GAN
python train.py gan_id --max_steps=1e7

Our experiments were conducted on an NVidia K620 Quadro GPU with 2GB memory. Training runs at ~600 batches per second with a batch size of 128. For 10 million steps (likely excessive) this takes around 4.5 hours.

View training progress and compare different runs using tensorboard:

tensorboard --logdir=models
  1. (Optional) Check your generator is behaving well by running gan_generator_vis.py model_id or interactively by running interactive_gan_generator_vis.ipynb and modifying the model_id.
  2. Define an inference specification by creating an inference_params/inference_id.json file, or select one of the defaults provided.
  3. Generate inference
python generate_inferences.py inference_id

Sequence optimization runs at ~5-10fps (speed-up compared to 1fps reported in paper due to reimplementation efficiencies rather than different ideas).

This will save results in results.hdf5 in the inference_id group. 9. See the results! * h3m_report.py or eva_report.py depending on the dataset gives qualitative results

python report.py eval_id
* `vis_sequence.py` visualizes inferences

Note that results are quite unstable with respect to GAN training. You may get considerably different quantitative results than those published in the paper, though qualitative behaviour should be similar.

Serialization

To aid with experiments with different parameter sets, model/inference parameters are saved in json for ease of parsing and human readability. To allow for extensibility, human_pose_util maintains registers for different datasets and skeletons.

See the README for details on setting up/preprocessing of datasets or implementing your own.

The scripts in this project register some default h3m/eva datasets using register_defaults. While normally fast, some data conversion is performed the first time this function is run for each dataset and requires the original datasets be available with paths defined (see below). If you only wish to experiment with one dataset -- e.g. h3m -- modify the default argument values for register_defaults, e.g. def register_defaults(h3m=True, eva=False): (or the relevant function calls).

If you implement your own datasets/skeletons, either add their registrations to the default functions, or edit the relevant scripts to register them manually.

Datasets

See human_pose_util repository for instructions for setting up datasets.

Requirements

For training/inference:

  • tensorflow 1.4
  • numpy
  • h5py For visualizations:
  • matplotlib
  • glumpy (install from source may reduce issues) For initial human 3.6m dataset transformations:
  • spacepy (for initial human 3.6m dataset conversion to hdf5)

Development

This branch will be actively maintained, updated and extended. For code used to generate results for the publication, see the 3dv2017 branch.

Contact

Please report any issues/bugs. Feature requests in this repository will largely be ignored, but will be considered if made in independent repositories.

Email contact to discuss ideas/collaborations welcome: [email protected].

Owner
Dominic Jack
Deep Learning / Cybsecurity Researcher
Dominic Jack
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022
Talk covering the features of skorch

Skorch Talk Skorch - A Union of Scikit-learn and PyTorch Presentation The slides can be downloaded at: download link. Google Colab Part One - MNIST Pa

Thomas J. Fan 3 Oct 20, 2020
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
Cortex-compatible model server for Python and TensorFlow

Nucleus model server Nucleus is a model server for TensorFlow and generic Python models. It is compatible with Cortex clusters, Kubernetes clusters, a

Cortex Labs 14 Nov 27, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
Approaches to modeling terrain and maps in python

topography 🌎 Contains different approaches to modeling terrain and topographic-style maps in python Features Inverse Distance Weighting (IDW) A given

John Gutierrez 1 Aug 10, 2022
This is the code repository for the paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (NeurIPS 2021).

Code Repository for the Paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (To appear in: Proceedings of NeurIPS20

1 Oct 03, 2022
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
My 1st place solution at Kaggle Hotel-ID 2021

1st place solution at Kaggle Hotel-ID My 1st place solution at Kaggle Hotel-ID to Combat Human Trafficking 2021. https://www.kaggle.com/c/hotel-id-202

Kohei Ozaki 18 Aug 19, 2022