This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

Related tags

Deep LearningGPRGNN
Overview

GPRGNN

This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

Hidden state feature extraction is performed by a neural networks using individual node features propagated via GPR. Note that both the GPR weights and parameter set of the neural network are learned simultaneously in an end-to-end fashion (as indicated in red).

The learnt GPR weights of the GPR-GNN on real world datasets. Cora is homophilic while Texas is heterophilic (Here, H stands for the level of homophily defined in the main text, Equation (1)). An interesting trend may be observed: For the heterophilic case the weights alternate from positive to negative with dampening amplitudes. The shaded region corresponds to a 95% confidence interval.

Requirement:

pytorch
pytorch-geometric
numpy

Run experiment with Cora:

go to folder src

python train_model.py --RPMAX 2 \
        --net GPRGNN \
        --train_rate 0.025 \
        --val_rate 0.025 \
        --dataset cora 

Create cSBM dataset:

go to folder src

source create_cSBM_dataset.sh

The total size of cSBM datasets we used is over 1GB hence they are not included in this repository, but we do have a sample of the dataset in data/cSBM_demo. We reccommend you to regenerate these datasets using the format of above script, start its name with 'cSBM_data' and change the parameter to what we choose in section A.10 in Appendix of our paper.

Repreduce results in Table 2:

To reproduce the results in Table 2 of our paper you need to first perform hyperparameter tuning. For details of optimization of all models, please refer to section A.9 in Appendix of our paper. Here are the settings for GPRGNN and APPNP:

We choose random walk path lengths with K = 10 and use a 2-layer (MLP) with 64 hidden units for the NN component. For the GPR weights, we use different initializations including PPR with , or and the default random initialization in pytorch. Similarly, for APPNP we search the optimal . For other hyperparameter tuning, we optimize the learning rate over {0.002, 0.01, 0.05} and weight decay {0.0, 0.0005} for all models.

Here is a list of hyperparameters for your reference:

  • For cora and citeseer, choosing different alpha doesn't make big difference. So you can choose alpha = 0.1.
  • For pubmed, we choose lr = 0.05, alpha = 0.2, wd = 0.0005 and add dprate = 0.5 (dropout for GPR part).
  • For computers, we choose lr = 0.05, alpha = 0.5 and wd = 0.
  • For Photo, we choose lr = 0.01, alpha = 0.5 and wd = 0.
  • For chameleon, we choose lr = 0.05, alpha = 1, wd = 0 and dprate = 0.7.
  • For Actor, we choose lr = 0.01, alpha = 0.9, wd = 0.
  • For squirrel, we choose lr = 0.05, alpha = 0, wd = 0, dprate = 0.7.
  • For Texas, we choose lr = 0.05, alpha = 1, wd = 0.0005.
  • For Cornell, we choose lr = 0.05, alpha = 0.9, wd = 0.0005.

Citation

Please cite our paper if you use this code in your own work:

@inproceedings{
chien2021adaptive,
title={Adaptive Universal Generalized PageRank Graph Neural Network},
author={Eli Chien and Jianhao Peng and Pan Li and Olgica Milenkovic},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=n6jl7fLxrP}
}

Feel free to email us([email protected], [email protected]) if you have any further questions.

Owner
Jianhao
Jianhao
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
基于深度强化学习的原神自动钓鱼AI

原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。

4.2k Jan 01, 2023
An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicity.

Fast Face Classification (F²C) This is the code of our paper An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicit

33 Jun 27, 2021
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
GrailQA: Strongly Generalizable Question Answering

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It ca

OSU DKI Lab 76 Dec 21, 2022
Leaderboard and Visualization for RLCard

RLCard Showdown This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to hel

Data Analytics Lab at Texas A&M University 246 Dec 26, 2022
Implementation of CVPR'2022:Surface Reconstruction from Point Clouds by Learning Predictive Context Priors

Surface Reconstruction from Point Clouds by Learning Predictive Context Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository c

136 Dec 12, 2022
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

DV Lab 31 Nov 17, 2022
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
source code the paper Fast and Robust Iterative Closet Point.

Fast-Robust-ICP This repository includes the source code the paper Fast and Robust Iterative Closet Point. Authors: Juyong Zhang, Yuxin Yao, Bailin De

yaoyuxin 320 Dec 28, 2022