K-FACE Analysis Project on Pytorch

Related tags

Deep Learningmixface
Overview

Installation

Setup with Conda

# create a new environment
conda create --name insightKface python=3.7 # or over
conda activate insightKface

#install the appropriate cuda version of pytorch(https://pytorch.org/)
#example:
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge

# install requirements
pip install -r requirements.txt

Data prepration

K-FACE Database

K-FACE AI-hub.

Detail configuration about K-FACE is provided in the paper below.

K-FACE: A Large-Scale KIST Face Database in Consideration with Unconstrained Environments

K-FACE sample images

title

Structure of the K-FACE database

title

Configuration of K-FACE

Configuration_of_KFACE

Detection & Alignment on K-FACE

"""
    ###################################################################

    K-Face : Korean Facial Image AI Dataset
    url    : http://www.aihub.or.kr/aidata/73

    Directory structure : High-ID-Accessories-Lux-Emotion
    ID example          : '19062421' ... '19101513' len 400
    Accessories example : 'S001', 'S002' .. 'S006'  len 6
    Lux example         : 'L1', 'L2' .. 'L30'       len 30
    Emotion example     : 'E01', 'E02', 'E03'       len 3
    
    ###################################################################
"""

# example
cd detection

python align_kfaces.py --ori_data_path '/data/FACE/KFACE/High' --detected_data_path 'kface_retina_align_112x112'

Training and test datasets on K-FACE

Train ID Accessories Lux Expression Pose #Image Variance
T1 A1 1000 E1 C4-10 2,590 Very Low
T2 A1-2 400-1000 E1 C4-10 46,620 Low
T3 A1-A4 200-1000 E1-2 C4-13 654,160 Middle
T4 A1-A6 40-1000 E1-3 C1-20 3,862,800 High
Test ID Accessories Lux Expression Pose #Pairs Variance
Q1 A1 1000 E1 C4-10 1,000 Very Low
Q2 A1-2 400-1000 E1 C4-10 100,000 Low
Q3 A1-4 200-1000 E1-2 C4-13 100,000 Middle
Q4 A1-6 40-1000 E1-3 C1-20 100,000 High

MS1M-RetinaFace (MS1M-R)

MS1M-RetinaFace download link:

  1. The Lightweight Face Recognition Challenge & Workshop.

  2. https://github.com/deepinsight/insightface/wiki/Dataset-Zoo

#Preprocess 'train.rec' and 'train.idx' to 'jpg'

# example
cd detection

python rec2image.py --include '/data/FACE/ms1m-retinaface-t1/' --output 'MS1M-RetinaFace'

Inference

After downloading the pretrained model, run test.py.

Pretrained Model

For all experiments, ResNet-34 was chosen as the baseline backbone.

The model was trained on KFACE

Head&Loss Q1 Q2 Q3 Q4
ArcFace (s=16, m=0.25) 98.30 94.77 87.87 85.41
SN-pair (s=64) 99.20 95.01 91.84 89.74
MixFace (e=1e-22, m=0.25) 100 96.37 92.36 89.80

Note:

  • For ArcFace, We tested (s,m)={(16,0.5), (32,0.25), (64,0.25), (32,0.5), (64,0.5)}, but the model was not trained properly So, we apply (s,m)=(16,0.25).
cd recognition

# example
python test.py --weights 'kface.mixface.1e-22m0.25.best.pt' --dataset 'kface' --data_cfg 'data/KFACE/kface.T4.yaml'

The model was trained on MS1M-R

Head&Loss Q2 Q3 Q4 LFW CFP-FP AgeDB-30
ArcFace (s=64, m=0.5) 98.71 86.60 82.03 99.80 98.41 98.80
SN-pair (s=64) 92.85 76.36 70.08 99.55 96.20 95.46
MixFace (e=1e-22, m=0.5) 97.36 82.89 76.95 99.68 97.74 97.25
cd recognition

# example
python test.py --weights 'face.mixface.1e-22m0.5.best.pt' --dataset 'face' --data_cfg 'data/face.all.yaml'

The model was trained on MS1M-R+T4

Head&Loss Q2 Q3 Q4 LFW CFP-FP AgeDB-30
ArcFace (s=8, m=0.25) 76.58 73.13 71.38 99.46 96.75 93.83
SN-pair (s=64) 98.37 94.98 93.33 99.45 94.90 93.45
MixFace (e=1e-22, m=0.5) 99.27 96.85 94.79 99.53 96.32 95.56

Note:

  • For ArcFace, we tested (s,m)={(8, 0.5), (16, 0.25), (16,0.5), (32,0.25), (64,0.25), (32,0.5), (64,0.5)}, but the model was not trained properly So, we apply (s,m)=(8,0.25).
cd recognition

# example
python test.py --weights 'merge.mixface.1e-22m0.5.best.pt' --dataset 'merge' --data_cfg 'data/merge.yaml'

Training

Multi-GPU DataParallel Mode

Example script for training on KFACE

cd recognition

# example 
python train.py --dataset 'kface' --head 'mixface' --data_cfg 'data/KFACE/kface.T4.yaml' --hyp 'data/face.hyp.yaml' --head_cfg 'models/head.kface.cfg.yaml' --name 'example' --device 0,1

Multi-GPU DistributedDataParallel Mode

Example script for training on KFACE

cd recognition

# example
python -m torch.distributed.launch --nproc_per_node 2 train.py --dataset 'kface' --head 'mixface' --data_cfg 'data/KFACE/kface.T4.yaml' --hyp 'data/face.hyp.yaml' --head_cfg 'models/head.kface.cfg.yaml' --name 'example' --device 0,1

Note:

  • For MS1M-R, change args --dataset face, --data_cfg data/face.all.yaml, and --head_cfg model/head.face.cfg.yaml.
  • For MS1M-R+T4, change args --dataset merge, --data_cfg data/merge.yaml, and --head_cfg model/head.merge.cfg.yaml.
  • The args --nodrop should be used if you train with the metric loss(e.g., SN-pair, N-pair, etc.) on MS1M-R or MS1M-R+T4.
  • The args --double should be used if you train with the metric loss(e.g., SN-pair, N-pair, etc.) or MixFace on MS1M-R or MS1M-R+T4.
  • DistributedDataParallel is only available to classification loss(e.g., arcface, cosface, etc.)

Reference code

Thanks for these source codes porviding me with knowledges to complete this repository.

  1. https://github.com/biubug6/Pytorch_Retinaface.
  2. https://github.com/deepinsight/insightface.
  3. https://github.com/ultralytics/yolov5
Owner
Jung Jun Uk
Jung Jun Uk
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in production.

NVIDIA Merlin NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs. It enables data scientists, machine

419 Jan 03, 2023
Rule Based Classification Project

Kural Tabanlı Sınıflandırma ile Potansiyel Müşteri Getirisi Hesaplama İş Problemi: Bir oyun şirketi müşterilerinin bazı özelliklerini kullanaraknseviy

Şafak 1 Jan 12, 2022
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Tianfei Zhou 239 Dec 26, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
Library to enable Bayesian active learning in your research or labeling work.

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the

Yi(Amy) Sui 2 Dec 01, 2021
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
Official repository of "BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment"

BasicVSR_PlusPlus (CVPR 2022) [Paper] [Project Page] [Code] This is the official repository for BasicVSR++. Please feel free to raise issue related to

Kelvin C.K. Chan 227 Jan 01, 2023
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits

OpenMMLab 182 Dec 27, 2022
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023