Learning Chinese Character style with conditional GAN

Overview

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks

animation

Introduction

Learning eastern asian language typefaces with GAN. zi2zi(字到字, meaning from character to character) is an application and extension of the recent popular pix2pix model to Chinese characters.

Details could be found in this blog post.

Network Structure

Original Model

alt network

The network structure is based off pix2pix with the addition of category embedding and two other losses, category loss and constant loss, from AC-GAN and DTN respectively.

Updated Model with Label Shuffling

alt network

After sufficient training, d_loss will drop to near zero, and the model's performance plateaued. Label Shuffling mitigate this problem by presenting new challenges to the model.

Specifically, within a given minibatch, for the same set of source characters, we generate two sets of target characters: one with correct embedding labels, the other with the shuffled labels. The shuffled set likely will not have the corresponding target images to compute L1_Loss, but can be used as a good source for all other losses, forcing the model to further generalize beyond the limited set of provided examples. Empirically, label shuffling improves the model's generalization on unseen data with better details, and decrease the required number of characters.

You can enable label shuffling by setting flip_labels=1 option in train.py script. It is recommended that you enable this after d_loss flatlines around zero, for further tuning.

Gallery

Compare with Ground Truth

compare

Brush Writing Fonts

brush

Cursive Script (Requested by SNS audience)

cursive

Mingchao Style (宋体/明朝体)

gaussian

Korean

korean

Interpolation

animation

Animation

animation animation

easter egg

How to Use

Step Zero

Download tons of fonts as you please

Requirement

  • Python 2.7
  • CUDA
  • cudnn
  • Tensorflow >= 1.0.1
  • Pillow(PIL)
  • numpy >= 1.12.1
  • scipy >= 0.18.1
  • imageio

Preprocess

To avoid IO bottleneck, preprocessing is necessary to pickle your data into binary and persist in memory during training.

First run the below command to get the font images:

python font2img.py --src_font=src.ttf
                   --dst_font=tgt.otf
                   --charset=CN 
                   --sample_count=1000
                   --sample_dir=dir
                   --label=0
                   --filter=1
                   --shuffle=1

Four default charsets are offered: CN, CN_T(traditional), JP, KR. You can also point it to a one line file, it will generate the images of the characters in it. Note, filter option is highly recommended, it will pre sample some characters and filter all the images that have the same hash, usually indicating that character is missing. label indicating index in the category embeddings that this font associated with, default to 0.

After obtaining all images, run package.py to pickle the images and their corresponding labels into binary format:

python package.py --dir=image_directories
                  --save_dir=binary_save_directory
                  --split_ratio=[0,1]

After running this, you will find two objects train.obj and val.obj under the save_dir for training and validation, respectively.

Experiment Layout

experiment/
└── data
    ├── train.obj
    └── val.obj

Create a experiment directory under the root of the project, and a data directory within it to place the two binaries. Assuming a directory layout enforce bettet data isolation, especially if you have multiple experiments running.

Train

To start training run the following command

python train.py --experiment_dir=experiment 
                --experiment_id=0
                --batch_size=16 
                --lr=0.001
                --epoch=40 
                --sample_steps=50 
                --schedule=20 
                --L1_penalty=100 
                --Lconst_penalty=15

schedule here means in between how many epochs, the learning rate will decay by half. The train command will create sample,logs,checkpoint directory under experiment_dir if non-existed, where you can check and manage the progress of your training.

Infer and Interpolate

After training is done, run the below command to infer test data:

python infer.py --model_dir=checkpoint_dir/ 
                --batch_size=16 
                --source_obj=binary_obj_path 
                --embedding_ids=label[s] of the font, separate by comma
                --save_dir=save_dir/

Also you can do interpolation with this command:

python infer.py --model_dir= checkpoint_dir/ 
                --batch_size=10
                --source_obj=obj_path 
                --embedding_ids=label[s] of the font, separate by comma
                --save_dir=frames/ 
                --output_gif=gif_path 
                --interpolate=1 
                --steps=10
                --uroboros=1

It will run through all the pairs of fonts specified in embedding_ids and interpolate the number of steps as specified.

Pretrained Model

Pretained model can be downloaded here which is trained with 27 fonts, only generator is saved to reduce the model size. You can use encoder in the this pretrained model to accelerate the training process.

Acknowledgements

Code derived and rehashed from:

License

Apache 2.0

Owner
Yuchen Tian
Born in the year of Snake, now stuck with Python.
Yuchen Tian
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
TalkingHead-1KH is a talking-head dataset consisting of YouTube videos

TalkingHead-1KH Dataset TalkingHead-1KH is a talking-head dataset consisting of YouTube videos, originally created as a benchmark for face-vid2vid: On

173 Dec 29, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
The official PyTorch implementation of paper BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition

BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition Boyan Zhou, Quan Cui, Xiu-Shen Wei*, Zhao-Min Chen This repo

Megvii-Nanjing 616 Dec 21, 2022
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Space Invaders For Python

Space-Invaders Just download or clone the git repository. To run the Space Invader game you need to have pyhton installed in you system. If you dont h

Fei 5 Jul 27, 2022
Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

Wasi Ahmad 26 Dec 03, 2022
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Wilson 1.7k Dec 30, 2022
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".

PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra

2 Dec 21, 2021
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
One Million Scenes for Autonomous Driving

ONCE Benchmark This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset. The code is mainly based on OpenPCDet.

148 Dec 28, 2022
Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Accelerating Reinforcement Learning with Learned Skill Priors [Project Website] [Paper] Karl Pertsch1, Youngwoon Lee1, Joseph Lim1 1CLVR Lab, Universi

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 134 Dec 06, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022