The hippynn python package - a modular library for atomistic machine learning with pytorch.

Related tags

Deep Learninghippynn
Overview

The hippynn python package - a modular library for atomistic machine learning with pytorch.

We aim to provide a powerful library for the training of atomistic (or physical point-cloud) machine learning. We want entry-level users to be able to efficiently train models to millions of datapoints, and a modular structure for extension or contribution.

While hippynn's development so-far has centered around the HIP-NN architecture, don't let that discourage you if you are performing research with another model. Get in touch, and let's work together to provide a high-quality implementation of your work, either as a contribution or an interface extension to your own package.

Features:

Modular set of pytorch layers for atomistic operations

  • Atomistic operations can be tricky to write in native pytorch. Most operations provided here support linear-scaling models.
  • Model energy, force charge & charge moments, bond orders, and more!
  • nn.Modules are written with minimal reference to the rest of the library; if you want to use them in your scripts without using the rest of the features provided here -- no problem!

Graph level API for simple and flexible construction of models from pytorch components.

  • Build models based on the abstract physics/mathematics of the problem, without having to think about implementation details.
  • Graph nodes support native python syntax, for example different forms of loss can be directly added.
  • Link predicted values in the model with a database entry to compare predicted and true values
  • IndexType logic records metadata about tensor structure, and provides automatic conversion to compatible structures when possible.
  • Graph API is independent of module implementation.

Plot level API for tracking your training.

  • Using the graph API, define quantities to evaluate before, during, or after training as figures using matplotlib.

Training & Experiment API

  • Integrated with graph level API
  • Pretty-printing loss metrics, generating plots periodically
  • Callbacks and checkpointing

Custom Kernels for fast execution

  • Certain operations are not efficiently written in pure pytorch, we provide alternative implementations with numba
  • These are directly linked in with pytorch Autograd -- use them like native pytorch functions.
  • These provide advantages in memory footprint and speed
  • Includes CPU and GPU execution for custom kernels

Interfaces

  • ASE: Define ASE calculators based on the graph-level API.
  • PYSEQM: Use PYSEQM calculations as nodes in a graph.

Installation

  • Clone this repository and navigate into it.
  • Run pip install .

If you fee like tinkering, do an editable install: pip install -e .

You can install using all optional dependencies from pip with: pip install -e .[full]

Notes

  • Install dependencies with pip from requirements.txt .
  • Install dependencies with conda from conda_requirements.txt .
  • If you don't want pip to install them, conda install from file before installing hippynn. You may want to use -c pytorch for the pytorch channel. For ase, you may want to use -c conda-forge.
  • Optional dependencies are in optional_dependencies.txt

We are currently under development. At the moment you should be prepared for breaking changes -- keep track of what version you are using if you need to maintain consistency.

As we clean up the rough edges, we are preparing a manuscript. If, in the mean time, you are using hippynn in your work, please cite this repository and the HIP-NN paper:

Lubbers, N., Smith, J. S., & Barros, K. (2018). Hierarchical modeling of molecular energies using a deep neural network. The Journal of chemical physics, 148(24), 241715.

See AUTHORS.txt for information on authors.

See LICENSE.txt for licensing information. hippynn is licensed under the BSD-3 license.

Triad National Security, LLC (Triad) owns the copyright to hippynn, which it identifies as project number LA-CC-19-093.

Copyright 2019. Triad National Security, LLC. All rights reserved. This program was produced under U.S. Government contract 89233218CNA000001 for Los Alamos National Laboratory (LANL), which is operated by Triad National Security, LLC for the U.S. Department of Energy/National Nuclear Security Administration. All rights in the program are reserved by Triad National Security, LLC, and the U.S. Department of Energy/National Nuclear Security Administration. The Government is granted for itself and others acting on its behalf a nonexclusive, paid-up, irrevocable worldwide license in this material to reproduce, prepare derivative works, distribute copies to the public, perform publicly and display publicly, and to permit others to do so.

Owner
Los Alamos National Laboratory
Los Alamos National Laboratory
Reimplementation of Learning Mesh-based Simulation With Graph Networks

Pytorch Implementation of Learning Mesh-based Simulation With Graph Networks This is the unofficial implementation of the approach described in the pa

Jingwei Xu 33 Dec 14, 2022
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang

code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G

21 Oct 12, 2020
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
Advanced yabai wooting scripts

Yabai Wooting scripts Installation requirements Both https://github.com/xiamaz/python-yabai-client and https://github.com/xiamaz/python-wooting-rgb ne

Max Zhao 3 Dec 31, 2021
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022
A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

Zain 1 Feb 01, 2022
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022