Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Overview

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification

We provide the codes for reproducing result of our paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Installation

  1. Basic environments: python3.6, pytorch1.8.0, cuda11.1.

  2. Our codes structure is based on Torchreid. (More details can be found in link: https://github.com/KaiyangZhou/deep-person-reid , you can download the packages according to Torchreid requirements.)

# create environment
cd AAAI2022_IEEE/
conda create --name ieeeReid python=3.6
conda activate ieeeReid

# install dependencies
# make sure `which python` and `which pip` point to the correct path
pip install -r requirements.txt

# install torch and torchvision (select the proper cuda version to suit your machine)
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge

# install torchreid (don't need to re-build it if you modify the source code)
python setup.py develop

Get start

  1. You can use the setting in im_r50_softmax_256x128_amsgrad_RGBNT_ieee_part_margin.yaml to get the results of full IEEE.

    python ./scripts/mainMultiModal.py --config-file ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_ieee_part_margin.yaml --seed 40
  2. You can run other methods by using following configuration file:

    # MLFN
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_mlfn.yaml
    
    # HACNN
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_hacnn.yaml
    
    # OSNet
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_osnet.yaml
    
    # HAMNet
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_hamnet.yaml
    
    # PFNet
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_hamnet.yaml
    
    # full IEEE
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_ieee_part_margin.yaml

Details

  1. The details of our Cross-modal Interacting Module (CIM) and Relation-based Embedding Module (REM) can be found in .\torchreid\models\ieee3modalPart.py. The design of Multi-modal Margin Loss(3M loss) can be found in .\torchreid\losses\multi_modal_margin_loss_new.py.

  2. Ablation study settings.

    You can control these two modules and the loss by change the corresponding codes.

    1. Cross-modal Interacting Module (CIM) and Relation-based Embedding Module (REM)
    # change the code in .\torchreid\models\ieee3modalPart.py
    
    class IEEE3modalPart(nn.Module):
        def __init__(···
        ):
            modal_number = 3
            fc_dims = [128]
            pooling_dims = 768
            super(IEEE3modalPart, self).__init__()
            self.loss = loss
            self.parts = 6
            
            self.backbone = nn.ModuleList(···
            )
    		
    		  # using Cross-modal Interacting Module (CIM)
            self.interaction = True
            # using channel attention in CIM
            self.attention = True
            
            # using Relation-based Embedding Module (REM)
            self.using_REM = True
            
            ···
    1. Multi-modal Margin Loss(3M loss)
    # change the code in .\configs\your_config_file.yaml
    
    # using Multi-modal Margin Loss(3M loss), you can change the margin by modify the parameter of "ieee_margin".
    ···
    loss:
      name: 'margin'
      softmax:
        label_smooth: True
      ieee_margin: 1
      weight_m: 1.0
      weight_x: 1.0
    ···
    
    # using only CE loss
    ···
    loss:
      name: 'softmax'
      softmax:
        label_smooth: True
      weight_x: 1.0
    ···
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
cl;asification problem using classification models in supervised learning

wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C

Vineeth Reddy Gangula 1 Jan 18, 2022
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Alex Rogozhnikov 6.2k Jan 01, 2023
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023