Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Overview

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zhou, Jiwen Lu

[arXiv] [Project Page] [Models]

This repository contains PyTorch implementation for Point-BERT:Pre-Training 3D Point Cloud Transformers with Masked Point Modeling.

Point-BERT is a new paradigm for learning Transformers to generalize the concept of BERT onto 3D point cloud. Inspired by BERT, we devise a Masked Point Modeling (MPM) task to pre-train point cloud Transformers. Specifically, we first divide a point cloud into several local patches, and a point cloud Tokenizer is devised via a discrete Variational AutoEncoder (dVAE) to generate discrete point tokens containing meaningful local information. Then, we randomly mask some patches of input point clouds and feed them into the backbone Transformer. The pre-training objective is to recover the original point tokens at the masked locations under the supervision of point tokens obtained by the Tokenizer.

intro

Pretrained Models

model dataset config url
dVAE ShapeNet config Tsinghua Cloud / BaiDuYun(code:26d3)
Point-BERT ShapeNet config Tsinghua Cloud / BaiDuYun(code:jvtg)
model dataset Acc. Acc. (vote) config url
Transformer ModelNet 92.67 93.24 config Tsinghua Cloud / BaiDuYun(code:tqow)
Transformer ModelNet 92.91 93.48 config Tsinghua Cloud / BaiDuYun(code:tcin)
Transformer ModelNet 93.19 93.76 config Tsinghua Cloud / BaiDuYun(code:k343)
Transformer ScanObjectNN 88.12 -- config Tsinghua Cloud / BaiDuYun(code:f0km)
Transformer ScanObjectNN 87.43 -- config Tsinghua Cloud / BaiDuYun(code:k3cb)
Transformer ScanObjectNN 83.07 -- config Tsinghua Cloud / BaiDuYun(code:rxsw)

Usage

Requirements

  • PyTorch >= 1.7.0
  • python >= 3.7
  • CUDA >= 9.0
  • GCC >= 4.9
  • torchvision
  • timm
  • open3d
  • tensorboardX
pip install -r requirements.txt

Building Pytorch Extensions for Chamfer Distance, PointNet++ and kNN

NOTE: PyTorch >= 1.7 and GCC >= 4.9 are required.

# Chamfer Distance
bash install.sh
# PointNet++
pip install "git+git://github.com/erikwijmans/Pointnet2_PyTorch.git#egg=pointnet2_ops&subdirectory=pointnet2_ops_lib"
# GPU kNN
pip install --upgrade https://github.com/unlimblue/KNN_CUDA/releases/download/0.2/KNN_CUDA-0.2-py3-none-any.whl

Dataset

We use ShapeNet for the training of dVAE and the pre-training of Point-BERT models. And finetuning the Point-BERT models on ModelNet, ScanObjectNN, ShapeNetPart

The details of used datasets can be found in DATASET.md.

dVAE

To train a dVAE by yourself, simply run:

bash scripts/train.sh <GPU_IDS>\
    --config cfgs/ShapeNet55_models/dvae.yaml \
    --exp_name <name>

Visualize the reconstruction results of a pre-trained dVAE, run: (default path: ./vis)

bash ./scripts/test.sh <GPU_IDS> \
    --ckpts <path>\
    --config cfgs/ShapeNet55_models/dvae.yaml\
    --exp_name <name>

Point-BERT pre-training

To pre-train the Point-BERT models on ShapeNet, simply run: (complete the ckpt in cfgs/Mixup_models/Point-BERT.yaml first )

bash ./scripts/dist_train_BERT.sh <NUM_GPU> <port>\
    --config cfgs/Mixup_models/Point-BERT.yaml \
    --exp_name pointBERT_pretrain 
    [--val_freq 10]

val_freq controls the frequence to evaluate the Transformer on ModelNet40 with LinearSVM.

Fine-tuning on downstream tasks

We finetune our Point-BERT on 4 downstream tasks: Classfication on ModelNet40, Few-shot learning on ModelNet40, Transfer learning on ScanObjectNN and Part segmentation on ShapeNetPart.

ModelNet40

To finetune a pre-trained Point-BERT model on ModelNet40, simply run:

# 1024 points
bash ./scripts/train_BERT.sh <GPU_IDS> \
    --config cfgs/ModelNet_models/PointTransformer.yaml\
    --finetune_model\
    --ckpts <path>\
    --exp_name <name>
# 4096 points
bash ./scripts/train_BERT.sh <GPU_IDS>\
    --config cfgs/ModelNet_models/PointTransformer_4096point.yaml\ 
    --finetune_model\ 
    --ckpts <path>\
    --exp_name <name>
# 8192 points
bash ./scripts/train_BERT.sh <GPU_IDS>\
    --config cfgs/ModelNet_models/PointTransformer_8192point.yaml\ 
    --finetune_model\ 
    --ckpts <path>\
    --exp_name <name>

To evaluate a model finetuned on ModelNet40, simply run:

bash ./scripts/test_BERT.sh <GPU_IDS>\
    --config cfgs/ModelNet_models/PointTransformer.yaml \
    --ckpts <path> \
    --exp_name <name>

Few-shot Learning on ModelNet40

We follow the few-shot setting in the previous work.

First, generate your own few-shot learning split or use the same split as us (see DATASET.md).

# generate few-shot learning split
cd datasets/
python generate_few_shot_data.py
# train and evaluate the Point-BERT
bash ./scripts/train_BERT.sh <GPU_IDS> \
    --config cfgs/Fewshot_models/PointTransformer.yaml \
    --finetune_model \
    --ckpts <path> \
    --exp_name <name> \
    --way <int> \
    --shot <int> \
    --fold <int>

ScanObjectNN

To finetune a pre-trained Point-BERT model on ScanObjectNN, simply run:

bash ./scripts/train_BERT.sh <GPU_IDS>  \
    --config cfgs/ScanObjectNN_models/PointTransformer_hardest.yaml \
    --finetune_model \
    --ckpts <path> \
    --exp_name <name>

To evaluate a model on ScanObjectNN, simply run:

bash ./scripts/test_BERT.sh <GPU_IDS>\
    --config cfgs/ScanObjectNN_models/PointTransformer_hardest.yaml \
    --ckpts <path> \
    --exp_name <name>

Part Segmentation

Code coming soon

Visualization

Masked point clouds reconstruction using our Point-BERT model trained on ShapeNet

results

License

MIT License

Citation

If you find our work useful in your research, please consider citing:

@article{yu2021pointbert,
  title={Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling},
  author={Yu, Xumin and Tang, Lulu and Rao, Yongming and Huang, Tiejun and Zhou, Jie and Lu, Jiwen},
  journal={arXiv preprint},
  year={2021}
}
Owner
Lulu Tang
Lulu Tang
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
Implementations of CNNs, RNNs, GANs, etc

Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co

Adit Deshpande 1k Dec 30, 2022
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022) This repository provides the official PyTorch impleme

Billy XU 128 Jan 03, 2023
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

Huiyiqianli 42 Dec 06, 2022
Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

Arch-Net: Model Distillation for Architecture Agnostic Model Deployment The official implementation of Arch-Net: Model Distillation for Architecture A

MEGVII Research 22 Jan 05, 2023
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020