《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

Overview

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters

This repository is the implementation of the paper "K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters".

In the K-adapter paper, we present a flexible approach that supports continual knowledge infusion into large pre-trained models (e.g. RoBERTa in this work). We infuse factual knowledge and linguistic knowledge, and show that adapters for both kinds of knowledge work well on downstream tasks.

For more details, please check the latest version of the paper: https://arxiv.org/abs/2002.01808

Prerequisites

  • Python 3.6
  • PyTorch 1.3.1
  • tensorboardX
  • transformers

We use huggingface/transformers framework, the environment can be installed with:

conda create -n kadapter python=3.6
pip install -r requirements.txt

Pre-training Adapters

In the pre-training procedure, we train each knowledge-specific adapter on different pre-training tasks individually.

1. Process Dataset

  • ./scripts/clean_T_REx.py: clean raw T-Rex dataset (32G), and save the cleaned T-Rex to JSON format
  • ./scripts/create_subdataset-relation-classification.ipynb: create the dataset from T-REx for pre-training factual adapter on relation classification task. This sub-dataset can be found here.
  • refer to this code to get the dependency parsing dataset : create the dataset from Book Corpus for pre-training the linguistic adapter on dependency parsing task.

2. Factual Adapter

To pre-train fac-adapter, run

bash run_pretrain_fac-adapter.sh

3. Linguistic Adapter

To pre-train lin-adapter, run

bash run_pretrain_lin-adapter.sh

The pre-trained fac-adapter and lin-adapter models can be found here.

Fine-tuning on Downstream Tasks

Adapter Structure

  • The fac-adapter (lin-adapter) consists of two transformer layers (L=2, H=768, A = 12)
  • The RoBERTa layers where adapters plug in: 0,11,23 or 0,11,22
  • For using only single adapter
    • Use the concatenation of the last hidden feature of RoBERTa and the last hidden feature of the adapter as the input representation for the task-specific layer.
  • For using combine adapter
    • For each adapter, first concat the last hidden feature of RoBERTa and the last hidden feature of every adapter and feed into a linear layer separately, then concat the representations as input for task-specific layer.

About how to load pretrained RoBERTa and pretrained adapter

  • The pre-trained adapters are in ./pretrained_models/fac-adapter/pytorch_model.bin and ./pretrained_models/lin-adapter/pytorch_model.bin. For using only single adapter, for example, fac-adapter, then you can set the argument meta_fac_adaptermodel= and set meta_lin_adaptermodel=””. For using both adapters, just set the arguments meta_fac_adaptermodel and meta_lin_adaptermodel as the path of adapters.
  • The pretrained RoBERTa will be downloaded automaticly when you run the pipeline.

1. Entity Typing

1.1 OpenEntity

One single 16G P100

(1) run the pipeline

bash run_finetune_openentity_adapter.sh

(2) result

  • with fac-adapter dev: (0.7967123287671233, 0.7580813347236705, 0.7769169115682607) test: (0.7929708951125755, 0.7584033613445378, 0.7753020134228187)
  • with lin-adapter dev: (0.8071672354948806, 0.7398331595411888, 0.7720348204570185) test:(0.8001135718341851, 0.7400210084033614, 0.7688949522510232)
  • with fac-adapter + lin-adapter dev: (0.8001101321585903, 0.7575599582898853, 0.7782538832351366) test: (0.7899568034557235, 0.7627737226277372, 0.7761273209549072)

the results may vary when running on different machines, but should not differ too much. I just search results from per_gpu_train_batch_sizeh: [4, 8] lr: [1e-5, 5e-6], warmup[0,200,500,1000,1200], maybe you can change other parameters and see the results. For w/fac-adapter, the best performance is achieved at gpu_num=1, per_gpu_train_batch_size=4, lr=5e-6, warmup=500(it takes about 2 hours to get the best result running on singe 16G P100) For w/lin-adapter, the best performance is achieved at gpu_num=1, per_gpu_train_batch_size=4, lr=5e-6, warmup=1000(it takes about 2 hours to get the best result running on singe 16G P100)

(3) Data format

Add special token "@" before and after a certain entity, then the first @ is adopted to perform classification. 9 entity categories: ['entity', 'location', 'time', 'organization', 'object', 'event', 'place', 'person', 'group'], each entity can be classified to several of them or none of them. The output is represented as [0,1,1,0,1,0,0,0,0], 0 represents the entity does not belong to the type, while 1 belongs to.

1.2 FIGER

(1) run the pipeline

bash run_finetune_figer_adapter.sh

The detailed hyperparamerters are listed in the running script.

2. Relation Classification

4*16G P100

(1) run the pipeline

bash run_finetune_tacred_adapter.sh

(2) result

  • with fac-adapter

    • 'dev': (0.6686945083853996, 0.7481604120676968, 0.7061989928807085)
    • 'test': (0.693900391717963, 0.7458646616541353, 0.7189447746050153)
  • with lin-adapter

    • 'dev': (0.6679165308118683, 0.7536791758646063, 0.7082108902333621),
    • 'test': (0.6884615384615385, 0.7536842105263157, 0.7195979899497488)
  • with fac-adapter + lin-adapter

    • 'dev': (0.6793893129770993, 0.7367549668874173, 0.7069102462271645)
    • 'test': (0.7014245014245014, 0.7404511278195489, 0.7204096561814192)
  • the results may vary when running on different machines, but should not differ too much.

  • I just search results from per_gpu_train_batch_sizeh: [4, 8] lr: [1e-5, 5e-6], warmup[0,200,1000,1200], maybe you can change other parameters and see the results.

  • The best performance is achieved at gpu_num=4, per_gpu_train_batch_size=8, lr=1e-5, warmup=200 (it takes about 7 hours to get the best result running on 4 16G P100)

  • The detailed hyperparamerters are listed in the running script.

(3) Data format

Add special token "@" before and after the first entity, add '#' before and after the second entity. Then the representations of @ and # are concatenated to perform relation classification.

3. Question Answering

3.1 CosmosQA

One single 16G P100

(1) run the pipeline

bash run_finetune_cosmosqa_adapter.sh

(2) result

CosmosQA dev accuracy: 80.9 CosmosQA test accuracy: 81.8

The best performance is achieved at gpu_num=1, per_gpu_train_batch_size=64, GRADIENT_ACC=32, lr=1e-5, warmup=0 (it takes about 8 hours to get the best result running on singe 16G P100) The detailed hyperparamerters are listed in the running script.

(3) Data format

For each answer, the input is contextquestionanswer, and will get a score for this answers. After getting four scores, we will select the answer with the highest score.

3.2 SearchQA and Quasar-T

The source codes for fine-tuning on SearchQA and Quasar-T dataset are modified based on the code of paper "Denoising Distantly Supervised Open-Domain Question Answering".

Use K-Adapter just like RoBERTa

  • You can use K-Adapter (RoBERTa with adapters) just like RoBERTa, which almost have the same inputs and outputs. Specifically, we add a class RobertawithAdapter in pytorch_transformers/my_modeling_roberta.py.
  • A demo code [run_example.sh and examples/run_example.py] about how to use “RobertawithAdapter”, do inference, save model and load model. You can leave the arguments of adapters as default.
  • Now it is very easy to use Roberta with adapters. If you only want to use single adapter, for example, fac-adapter, then you can set the argument meta_fac_adaptermodel='./pretrained_models/fac-adapter/pytorch_model.bin'' and set meta_lin_adaptermodel=””. If you want to use both adapters, just set the arguments meta_fac_adaptermodel and meta_lin_adaptermodel as the path of adapters.
bash run_example.sh

TODO

  • Remove and merge redundant codes
  • Support other pre-trained models, such as BERT...

Contact

Feel free to contact Ruize Wang ([email protected]) if you have any further questions.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

FlyEgle 214 Dec 29, 2022
A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

UniNAS A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS). under development (which happens mostly on our internal Gi

Cognitive Systems Research Group 19 Nov 23, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

Jayson Reis 94 Nov 21, 2022
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an

VITA 112 Nov 07, 2022
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

If you are using this code in your own project, please cite our paper: @inproceedings{awiszus2020toadgan, title={TOAD-GAN: Coherent Style Level Gene

Maren A. 13 Dec 14, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022