Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Overview

Variance-Aware-MT-Test-Sets

Variance-Aware Machine Translation Test Sets

License

See LICENSE. We follow the data licensing plan as the same as the WMT benchmark.

VAT Data

We release 70 lightweight and discriminative test sets for machine translation evaluation, covering 35 translation directions from WMT16 to WMT20 competitions. See VAT_data folder for detailed information.

For each translation direction of a specific year, both source and reference are provided for different types of evaluation metrics. For example,

VAT_data/
├── wmt20
    ├── ...
    ├── vat_newstest2020-zhen-ref.en.txt
    └── vat_newstest2020-zhen-src.zh.txt

Meta-Information of VAT

We also provide the meta-inforamtion of reserved data. Each json file contains the IDs of retained data in the original test set. For instance, file wmt20/bert-r_filter-std60.json describes:

{
	...
	"en-de": [4, 6, 10, 13, 14, 15, ...],
	"de-en": [0, 3, 4, 5, 7, 9, ...],
	...
}

Reproduce & Create VAT

The reported results in the paper were produced by single NVIDIA GeForce 1080Ti card.

We will keep updating the code and related documentation after the response.

Requirements

  • sacreBLEU version >= 1.4.14
  • BLEURT version >= 0.0.2
  • COMET version >= 0.1.0
  • BERTScore version >= 0.3.7 (hug_trans==4.2.1)
  • PyTorch version >= 1.5.1
  • Python version >= 3.8
  • CUDA & cudatoolkit >= 10.1

Note: the minimal version is for reproducing the results

Pipeline

  1. Use score_xxx.py to generate the CSV files that stores the sentence-level scores evaluated by the corresponding metrics. For example, evaluating all the WMT20 submissions of all the language pairs using BERTScore:
    CUDA_VISIBLE_DEVICES=0 python score_bert.py -b 128 -s -r dummy -c dummy --rescale_with_baseline \
    	--hypos-dir ${WMT_DATA_PATH}/system-outputs \
    	--refs-dir ${WMT_DATA_PATH}/references \
    	--scores-dir ${WMT_DATA_PATH}/results/system-level/scores_ALL \
    	--testset-name newstest2020 --score-dump wmt20-bertscore.csv
    (Alternative Option) You can use your implementation for dumping the scores given by the metrics. But the CSV header should contain:
    ,TESTSET,LP,ID,METRIC,SYS,SCORE
    
  2. Use cal_filtering.py to filter the test set based on the score warehouse calculated in the last step. For example,
    python cal_filtering.py --score-dump wmt20-bertscore.csv --output VAT_meta/wmt20-test/ --filter-per 60
    It will produce the json files which contain the IDs of reserved sentences.

Statistics of VAT (References)

Benchmark Translation Direction # Sentences # Words # Vocabulary
wmt20 km-en 928 17170 3645
wmt20 cs-en 266 12568 3502
wmt20 en-de 567 21336 5945
wmt20 ja-en 397 10526 3063
wmt20 ps-en 1088 20296 4303
wmt20 en-zh 567 18224 5019
wmt20 en-ta 400 7809 4028
wmt20 de-en 314 16083 4046
wmt20 zh-en 800 35132 6457
wmt20 en-ja 400 12718 2969
wmt20 en-cs 567 16579 6391
wmt20 en-pl 400 8423 3834
wmt20 en-ru 801 17446 6877
wmt20 pl-en 400 7394 2399
wmt20 iu-en 1188 23494 3876
wmt20 ru-en 396 6966 2330
wmt20 ta-en 399 7427 2148
wmt19 zh-en 800 36739 6168
wmt19 en-cs 799 15433 6111
wmt19 de-en 800 15219 4222
wmt19 en-gu 399 8494 3548
wmt19 fr-de 680 12616 3698
wmt19 en-zh 799 20230 5547
wmt19 fi-en 798 13759 3555
wmt19 en-fi 799 13303 6149
wmt19 kk-en 400 9283 2584
wmt19 de-cs 799 15080 6166
wmt19 lt-en 400 10474 2874
wmt19 en-lt 399 7251 3364
wmt19 ru-en 800 14693 3817
wmt19 en-kk 399 6411 3252
wmt19 en-ru 799 16393 6125
wmt19 gu-en 406 8061 2434
wmt19 de-fr 680 16181 3517
wmt19 en-de 799 18946 5340
wmt18 en-cs 1193 19552 7926
wmt18 cs-en 1193 23439 5453
wmt18 en-fi 1200 16239 7696
wmt18 en-tr 1200 19621 8613
wmt18 en-et 800 13034 6001
wmt18 ru-en 1200 26747 6045
wmt18 et-en 800 20045 5045
wmt18 tr-en 1200 25689 5955
wmt18 fi-en 1200 24912 5834
wmt18 zh-en 1592 42983 7985
wmt18 en-zh 1592 34796 8579
wmt18 en-ru 1200 22830 8679
wmt18 de-en 1199 28275 6487
wmt18 en-de 1199 25473 7130
wmt17 en-lv 800 14453 6161
wmt17 zh-en 800 20590 5149
wmt17 en-tr 1203 17612 7714
wmt17 lv-en 800 18653 4747
wmt17 en-de 1202 22055 6463
wmt17 ru-en 1200 24807 5790
wmt17 en-fi 1201 17284 7763
wmt17 tr-en 1203 23037 5387
wmt17 en-zh 800 18001 5629
wmt17 en-ru 1200 22251 8761
wmt17 fi-en 1201 23791 5300
wmt17 en-cs 1202 21278 8256
wmt17 de-en 1202 23838 5487
wmt17 cs-en 1202 22707 5310
wmt16 tr-en 1200 19225 4823
wmt16 ru-en 1199 23010 5442
wmt16 ro-en 800 16200 3968
wmt16 de-en 1200 22612 5511
wmt16 en-ru 1199 20233 7872
wmt16 fi-en 1200 20744 5176
wmt16 cs-en 1200 23235 5324
Owner
NLP2CT Lab, University of Macau
Natural Language Processing & Portuguese - Chinese Machine Translation Laboratory
NLP2CT Lab, University of Macau
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Brown University Visual Computing Group 75 Dec 13, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 12 Nov 08, 2022
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
Source code for "Taming Visually Guided Sound Generation" (Oral at the BMVC 2021)

Taming Visually Guided Sound Generation • [Project Page] • [ArXiv] • [Poster] • • Listen for the samples on our project page. Overview We propose to t

Vladimir Iashin 226 Jan 03, 2023
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
Text completion with Hugging Face and TensorFlow.js running on Node.js

Katana ML Text Completion 🤗 Description Runs with with Hugging Face DistilBERT and TensorFlow.js on Node.js distilbert-model - converter from Hugging

Katana ML 2 Nov 04, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022