Python library for tracking human heads with FLAME (a 3D morphable head model)

Overview

Video Head Tracker

Teaser image

3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It determines FLAMEs shape and texture parameters as well as spherical harmonics lights and camera intrinsics for a video sequence. Afterwards, expressions and poses (rigid, neck, jaw, eyes) are optimized for each frame of the video. The only inputs are an RGB video together with facial and iris landmarks. The latter is estimated by our code automatically.

This repository complements the code release of the CVPR2022 paper Neural Head Avatars from Monocular RGB Videos. The code is maintained independently from the paper's code to ease reusing it in other projects.

Installation

  • Install Python 3.9 (it should work with other versions as well, but the setup.py and dependencies must be adjusted to do so).
  • Clone the repo and run pip install -e . from inside the cloned directory.
  • Download the flame head model and texture space from the from the official website and add them as generic_model.pkl and FLAME_texture.npz under ./assets/flame.
  • Finally, go to https://github.com/HavenFeng/photometric_optimization and copy the uv parametrization head_template_mesh.obj of FLAME found there to ./assets/flame, as well.

Usage

To run the tracker on a video run

python vht/optimize_tracking.py --config your_config.ini --video path_to_video --data_path path_to_data

The video path and data path can also be given inside the config file. In general, all parameters in the config file may be overwritten by providing them on the command line explicitly. If a video path is given, the video will be extracted and facial + iris landmarks are predicted for each frame. The frames and landmarks are stored at --data_path. Once extracted, you can reuse them by not passing the --video flag anymore. We provide config file for two identities tracked in the main paper. The video data for these subjects can be downloaded from the paper repository. These configs provide good defaults for other videos, as well.

If you would like to use your own videos, the following parameters are most important to set:

[dataset]
data_path = PATH_TO_DATASET --> discussed above

[training]
output_path = OUTPUT_PATH --> where the results will be stored
keyframes = [90, 415, 434, 193] --> list of frames used to optimize shape, texture, lights and camera
                                --> ideally, you provide one front, one left and one right view

The optimized parameters are stored in the output directory as tracked_flame_params.npz.

License

The code is available for non-commercial scientific research purposes under the CC BY-NC 3.0 license. Please note that the files flame.py and lbs.py are heavily inspired by https://github.com/HavenFeng/photometric_optimization and are property of the Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. The download, use, and distribution of this code is subject to this license. The files that can be found in the ./assets directory, are adapted from the FLAME head model for which the license can be found here.

Citation

If you find our work useful, please include the following citation:

@article{grassal2021neural,
  title={Neural Head Avatars from Monocular RGB Videos},
  author={Grassal, Philip-William and Prinzler, Malte and Leistner, Titus and Rother, Carsten
          and Nie{\ss}ner, Matthias and Thies, Justus},
  journal={arXiv preprint arXiv:2112.01554},
  year={2021}
}

Acknowledgements

This project has received funding from the DFG in the joint German-Japan-France grant agreement (RO 4804/3-1) and the ERC Starting Grant Scan2CAD (804724). We also thank the Center for Information Services and High Performance Computing (ZIH) at TU Dresden for generous allocations of computer time.

Implementation of: "Exploring Randomly Wired Neural Networks for Image Recognition"

RandWireNN Unofficial PyTorch Implementation of: Exploring Randomly Wired Neural Networks for Image Recognition. Results Validation result on Imagenet

Seung-won Park 684 Nov 02, 2022
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
Easy-to-use micro-wrappers for Gym and PettingZoo based RL Environments

SuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers'). We supp

Farama Foundation 357 Jan 06, 2023
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022
Ranger - a synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase

Ranger-Deep-Learning-Optimizer Ranger - a synergistic optimizer combining RAdam (Rectified Adam) and LookAhead, and now GC (gradient centralization) i

Less Wright 1.1k Dec 21, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow

xRBM Library Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow Installation Using pip: pip install xrbm Examples Tut

Omid Alemi 55 Dec 29, 2022
A repo with study material, exercises, examples, etc for Devnet SPAUTO

MPLS in the SDN Era -- DevNet SPAUTO Get right to the study material: Checkout the Wiki! A lab topology based on MPLS in the SDN era book used for 30

Hugo Tinoco 67 Nov 16, 2022
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

1.4k Jan 01, 2023
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022