PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

Related tags

Deep LearningDRNet
Overview

DRNet for Video Indvidual Counting (CVPR 2022)

Introduction

This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning for Video Individual Counting. Different from the single image counting methods, it counts the total number of the pedestrians in a video sequence with a person in different frames only being calculated once. DRNet decomposes this new task to estimate the initial crowd number in the first frame and integrate differential crowd numbers in a set of following image pairs (namely current frame and preceding frame). framework

Catalog

  • Testing Code (2022.3.19)
  • PyTorch pretrained models (2022.3.19)
  • Training Code
    • HT21
    • SenseCrowd

Getting started

preparatoin

  • Clone this repo in the directory (Root/DRNet):

  • Install dependencies. We use python 3.7 and pytorch >= 1.6.0 : http://pytorch.org.

    conda create -n DRNet python=3.7
    conda activate DRNet
    conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2 -c pytorch
    cd ${DRNet}
    pip install -r requirements.txt
  • PreciseRoIPooling for extracting the feature descriptors

    Note: the PreciseRoIPooling [1] module is included in the repo, but it's likely to have some problems when running the code:

    1. If you are prompted to install ninja, the following commands will help you.
      wget https://github.com/ninja-build/ninja/releases/download/v1.8.2/ninja-linux.zip
      sudo unzip ninja-linux.zip -d /usr/local/bin/
      sudo update-alternatives --install /usr/bin/ninja ninja /usr/local/bin/ninja 1 --force 
    2. If you encounter errors when compiling the PreciseRoIPooling, you can look up the original repo's issues for help.
  • Datasets

    • HT21 dataset: Download CroHD dataset from this link. Unzip HT21.zip and place HT21 into the folder (Root/dataset/).
    • SenseCrowd dataset: To be updated when it is released.
    • Download the lists of train/val/test sets at link: dataset., and place them to each dataset folder, respectively.

Training

Check some parameters in config.py before training,

  • Use __C.DATASET = 'HT21' to set the dataset (default: HT21).
  • Use __C.GPU_ID = '0' to set the GPU.
  • Use __C.MAX_EPOCH = 20 to set the number of the training epochs (default:20).
  • Use __C.EXP_PATH = os.path.join('./exp', __C.DATASET) to set the dictionary for saving the code, weights, and resume point.

Check other parameters (TRAIN_BATCH_SIZE, TRAIN_SIZE etc.) in the Root/DRNet/datasets/setting in case your GPU's memory is not support for the default setting.

  • run python train.py.

Tips: The training process takes ~10 hours on HT21 dataset with one TITAN RTX (24GB Memory).

Testing

To reproduce the performance, download the pre-trained models and then place pretrained_models folder to Root/DRNet/model/

  • for HT21:
    • Run python test_HT21.py.
  • for SenseCrowd:
    • Run python test_SENSE.py. Then the output file (*_SENSE_cnt.py) will be generated.

Performance

The results on HT21 and SenseCrowd.

  • HT21 dataset
Method CroHD11~CroHD15 MAE/MSE/MRAE(%)
Paper: VGG+FPN [2,3] 164.6/1075.5/752.8/784.5/382.3 141.1/192.3/27.4
This Repo's Reproduction: VGG+FPN [2,3] 138.4/1017.5/623.9/659.8/348.5 160.7/217.3/25.1
  • SenseCrowd dataset
Method MAE/MSE/MRAE(%) MIAE/MOAE D0~D4 (for MAE)
Paper: VGG+FPN [2,3] 12.3/24.7/12.7 1.98/2.01 4.1/8.0/23.3/50.0/77.0
This Repo's Reproduction: VGG+FPN [2,3] 11.7/24.6/11.7 1.99/1.88 3.6/6.8/22.4/42.6/85.2

Video Demo

Please visit bilibili or YouTube to watch the video demonstration. demo

References

  1. Acquisition of Localization Confidence for Accurate Object Detection, ECCV, 2018.
  2. Very Deep Convolutional Networks for Large-scale Image Recognition, arXiv, 2014.
  3. Feature Pyramid Networks for Object Detection, CVPR, 2017.

Citation

If you find this project is useful for your research, please cite:

@article{han2022drvic,
  title={DR.VIC: Decomposition and Reasoning for Video Individual Counting},
  author={Han, Tao, Bai Lei, Gao, Junyu, Qi Wang, and Ouyang  Wanli},
  booktitle={CVPR},
  year={2022}
}

Acknowledgement

The released PyTorch training script borrows some codes from the C^3 Framework and SuperGlue repositories. If you think this repo is helpful for your research, please consider cite them.

Owner
tao han
tao han
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo 73 Oct 17, 2022

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

1 Dec 22, 2021
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022
Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Minimal implementation and experiments of "No-Transaction Band N

19 Jan 03, 2023
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022