Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Overview

Point Cloud Denoising

input segmentation output
#9F1924 raw point-cloud #9E9E9E valid/clear #7300E6 fog #009999 rain #6EA046 de-noised

Abstract

Lidar sensors are frequently used in environment perception for autonomous vehicles and mobile robotics to complement camera, radar, and ultrasonic sensors. Adverse weather conditions are significantly impacting the performance of lidar-based scene understanding by causing undesired measurement points that in turn effect missing detections and false positives. In heavy rain or dense fog, water drops could be misinterpreted as objects in front of the vehicle which brings a mobile robot to a full stop. In this paper, we present the first CNN-based approach to understand and filter out such adverse weather effects in point cloud data. Using a large data set obtained in controlled weather environments, we demonstrate a significant performance improvement of our method over state-of-the-art involving geometric filtering.

Download Dataset

Information: Click here for registration and download.

Dataset Information

  • each channel contains a matrix with 32x400 values, ordered in layers and columns
  • the coordinate system is based on the conventions for land vehicles DIN ISO 8855 (Wikipedia)
hdf5 channels info
labels_1 groundtruth labels, 0: no label, 100: valid/clear, 101: rain, 102: fog
distance_m_1 distance in meter
intensity_1 raw intensity of the sensor
sensorX_1 x-coordinates in a projected 32x400 view
sensorY_1 y-coordinates in a projected 32x400 view
sensorZ_1 z-coordinates in a projected 32x400 view
hdf5 attributes info
dateStr date of the recording yyyy-mm-dd
timeStr timestamp of the recording HH:MM:SS
meteorologicalVisibility_m ground truth meteorological visibility in meter provided by the climate chamber
rainfallRate_mmh ground truth rainfall rate in mm/h provided by the climate chamber
# example for reading the hdf5 attributes
import h5py
with h5py.File(filename, "r", driver='core') as hdf5:
  weather_data = dict(hdf5.attrs)

Getting Started

We provide documented tools for visualization in python using ROS. Therefore, you need to install ROS and the rospy client API first.

  • install rospy
apt install python-rospy  

Then start "roscore" and "rviz" in separate terminals.

Afterwards, you can use the visualization tool:

  • clone the repository:
cd ~/workspace
git clone https://github.com/rheinzler/PointCloudDeNoising.git
cd ~/workspace/PointCloudDeNoising
  • create a virtual environment:
mkdir -p ~/workspace/PointCloudDeNoising/venv
virtualenv --no-site-packages -p python3 ~/workspace/PointCloudDeNoising/venv
  • source virtual env and install dependencies:
source ~/workspace/PointCloudDeNoising/venv/bin/activate
pip install -r requirements.txt
  • start visualization:
cd src
python visu.py

Notes:

  • We used the following label mapping for a single lidar point: 0: no label, 100: valid/clear, 101: rain, 102: fog
  • Before executing the script you should change the input path

Reference

If you find our work on lidar point-cloud de-noising in adverse weather useful for your research, please consider citing our work.:

@article{PointCloudDeNoising2020, 
  author   = {Heinzler, Robin and Piewak, Florian and Schindler, Philipp and Stork, Wilhelm},
  journal  = {IEEE Robotics and Automation Letters}, 
  title    = {CNN-based Lidar Point Cloud De-Noising in Adverse Weather}, 
  year     = {2020}, 
  keywords = {Semantic Scene Understanding;Visual Learning;Computer Vision for Transportation}, 
  doi      = {10.1109/LRA.2020.2972865}, 
  ISSN     = {2377-3774}
}

Acknowledgements

This work has received funding from the European Union under the H2020 ECSEL Programme as part of the DENSE project, contract number 692449. We thank Velodyne Lidar, Inc. for permission to publish this dataset.

Feedback/Questions/Error reporting

Feedback? Questions? Any problems or errors? Please do not hesitate to contact us!

Replication of Pix2Seq with Pretrained Model

Pretrained-Pix2Seq We provide the pre-trained model of Pix2Seq. This version contains new data augmentation. The model is trained for 300 epochs and c

peng gao 51 Nov 22, 2022
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
TalkingHead-1KH is a talking-head dataset consisting of YouTube videos

TalkingHead-1KH Dataset TalkingHead-1KH is a talking-head dataset consisting of YouTube videos, originally created as a benchmark for face-vid2vid: On

173 Dec 29, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
A simple pygame dino game which can also be trained and played by a NEAT KI

Dino Game AI Game The game itself was developed with the Pygame module pip install pygame You can also play it yourself by making the dino jump with t

Kilian Kier 7 Dec 05, 2022
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022