MERLOT: Multimodal Neural Script Knowledge Models

Related tags

Deep Learningmerlot
Overview

merlot

MERLOT: Multimodal Neural Script Knowledge Models

MERLOT is a model for learning what we are calling "neural script knowledge" -- representations about what is going on in videos, spanning multiple video frames with associated captions.

Visit our project page at rowanzellers.com/merlot, or read the full paper to learn more.

teaser

What's here

We are releasing the following:

  • Code for the MERLOT model (in model/, with data processing in data/
  • Code for running MERLOT over visual story ordering.

We plan to release:

  • Information about the videos used in this work
  • Code for adapting the model to other tasks (not strictly needed, but just to make things easier)

This is somewhat ongoing -- we hope to make it somewhat easier to adapt MERLOT to other tasks, please follow if interested!

Enviroment and setup

There are two different ways of running MERLOT right now

  • Pretraining on videos This requires a TPU pod.
  • Finetuning on downstream tasks We did this on TPU v3-8 machines. You can in theory do this on GPUs, however, this isn't tested or officially supported right now.
  • Zero-shot visual-story ordering I have code for this on a TPU, but you should be able to do this on a GPU too.
conda create --name merlot python=3.7 && conda activate merlot
conda install -y python=3.7 tqdm numpy pyyaml scipy ipython cython typing h5py pandas

# If running on GPU
pip install tensorflow-gpu==1.15.5
# If running on TPU
pip install tensorflow==1.15.5

pip install --upgrade google-api-python-client oauth2client boto3 cloud-tpu-profiler regex opencv-python-headless Pillow seaborn
pip install numpy==1.17.0

Pretraining from scratch

This requires a large TPU pod for data-parallelism.

  • First, you'll need to get a bunch of training data in "tfrecord" format -- see data processing in data/ for that. You'll then need to adjust the configuration of model/configs/merlot.yaml accordingly. You'll also need to add in your output path (where you want your newly pretrained model to be saved).
  • Next, in the model directory, run python train.py configs/merlot.yaml

Finetuning on downstream tasks

  • We used the configuration model/merlot.yaml and the checkpoint at gs://merlot/checkpoint_4segments/ for downstream task finetuning. This is slightly different than the checkpoint we used for story unshuffling (that we had to adapt to account for the 5 frame-caption segments for that task), but both should work.
  • Actual finetuning code TBD -- you just create a MerlotModel model/modeling.py, set up your finetuning task (usually involving an additional output layer), and finetune.

Bibtex

@article{zellersluhessel2021merlot,
    title={MERLOT: Multimodal Neural Script Knowledge Models},
    author={Zellers, Rowan and Lu, Ximing and Hessel, Jack and Yu, Youngjae and Park, Jae Sung and Cao, Jize and Farhadi, Ali and Choi, Yejin},
    journal={arXiv preprint arXiv:2106.02636},
    year={2021}
}
Owner
Rowan Zellers
Rowan Zellers
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold

DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat

4 Nov 15, 2022
YOLOV4运行在嵌入式设备上

在嵌入式设备上实现YOLO V4 tiny 在嵌入式设备上实现YOLO V4 tiny 目录结构 目录结构 |-- YOLO V4 tiny |-- .gitignore |-- LICENSE |-- README.md |-- test.txt |-- t

Liu-Wei 6 Sep 09, 2021
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

Dennis Bappert 104 Nov 25, 2022
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
Joint deep network for feature line detection and description

SOLD² - Self-supervised Occlusion-aware Line Description and Detection This repository contains the implementation of the paper: SOLD² : Self-supervis

Computer Vision and Geometry Lab 427 Dec 27, 2022
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang

Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C

Shen Lab at Texas A&M University 80 Nov 23, 2022
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022