Multi-Glimpse Network With Python

Related tags

Deep LearningMGNet
Overview

Multi-Glimpse Network

Our code requires Python ≥ 3.8

Installation

For example, venv + pip:

$ python3 -m venv env
$ source env/bin/activate
(env) $ python3 -m pip install -r requirements.txt

Evaluation

Accuracy on clean images

  1. Create ImageNet100 from ImageNet (using symbolic links).
$ python3 tools/create_imagenet100.py tools/imagenet100.txt \
    /path/to/ImageNet /path/to/ImageNet100
  1. Download checkpoints from Google Drive.

  2. Test accuracy.

$ export dataset="--train_dir /path/to/ImageNet100/train \
    --val_dir /path/to/ImageNet100/val \
    --dataset imagenet --num_class 100"
# Baseline
$ python3 main.py $dataset --test --n_iter 1 --scale 1.0  --model resnet18 \
    --checkpoint resnet18_baseline
# Ours
$ python3 main.py $dataset --test --n_iter 4 --scale 2.33 --model resnet18 \
    --checkpoint resnet18_ours --alpha 0.6 --s 0.02

Add the flag --flop_count to count the approximate FLOPs for the inference of an image. (using fvcore)

Accuracy on adversarial attacks (PGD)

  1. Test adversarial accuracy.
# Baseline
$ python3 main.py $dataset --test --n_iter 1 --scale 1.0  --adv --step_k 10 \
    --model resnet18 --checkpoint resnet18_baseline
# Ours
$ python3 main.py $dataset --test --n_iter 4 --scale 2.33 --adv --step_k 10 \
    --model resnet18 --checkpoint resnet18_ours --alpha 0.6 --s 0.02

Accuracy on common corruptions

  1. Create ImageNet100-C from ImageNet-C (using symbolic links).
$ python3 tools/create_imagenet100c.py  \
    tools/imagenet100.txt  /path/to/ImageNet-C/ /path/to/ImageNet100-C/
  1. Test for a single corruption.
$ export dataset="--train_dir /path/to/ImageNet100/train \
    --val_dir /path/to/ImageNet100-C/pixelate/5 \
    --dataset imagenet --num_class 100"
# Baseline
$ python3 main.py $dataset --test --n_iter 1 --scale 1.0  --model resnet18 \
    --checkpoint resnet18_baseline
# Ours
$ python3 main.py $dataset --test --n_iter 4 --scale 2.33 --model resnet18 \
    --checkpoint resnet18_ours --alpha 0.6 --s 0.02
  1. A simple script to test all corruptions and collect results.
# Modify tools/eval_imagenet100c.py and run it to generate script
$ python3 tools/eval_imagenet100c.py /home2/ImageNet100-C/ > run.sh
# Evaluate
$ bash run.sh
# Collect results
$ python3 tools/collect_imagenet100c.py

Training

$ export dataset="--train_dir /path/to/ImageNet100/train \
    --val_dir /path/to/ImageNet100/val \
    --dataset imagenet --num_class 100"
# Baseline
$ python3 main.py $dataset --epochs 400 --n_iter 1 --scale 1.0 \
    --model resnet18 --gpu 0,1,2,3
# Ours
$ python3 main.py $dataset --epochs 400 --n_iter 4 --scale 2.33 \
    --model resnet18 --alpha 0.6 --s 0.02  --gpu 0,1,2,3

Check tensorboard for the logs. (When training with multiple gpus, the log value may be scaled by the number of gpus except for the validation accuracy)

tensorboard  --logdir=logs

Note that we left our exploration in the code for further study, e.g., self-supervised spatial guidance, dynamic gradient re-scaling operation.

Owner
LInkedIn https://www.linkedin.com/in/sia-huat-tan-2bb6911a5/
Stochastic Scene-Aware Motion Prediction

Stochastic Scene-Aware Motion Prediction [Project Page] [Paper] Description This repository contains the training code for MotionNet and GoalNet of SA

Mohamed Hassan 31 Dec 09, 2022
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
Laplace Redux -- Effortless Bayesian Deep Learning

Laplace Redux - Effortless Bayesian Deep Learning This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Ba

Runa Eschenhagen 28 Dec 07, 2022
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O

ETS 528 Nov 25, 2022
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
TResNet: High Performance GPU-Dedicated Architecture

TResNet: High Performance GPU-Dedicated Architecture paperV2 | pretrained models Official PyTorch Implementation Tal Ridnik, Hussam Lawen, Asaf Noy, I

426 Dec 28, 2022
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021