Explaining Hyperparameter Optimization via PDPs

Overview

Explaining Hyperparameter Optimization via PDPs

This repository gives access to an implementation of the methods presented in the paper submission “Explaining Hyperparameter Optimization via PDPs”, as well as all code that was used for the experimental analysis.

This repository is structured as follows:

    ├── analysis/               # Scripts used to create figures and tables in the paper
    ├── data/                   # Location where all experimental data is stored
    │   ├── raw/                # Raw datasets for the DNN surrogate benchmark
    │   ├── runs/               # Individual runs 
    ├── benchmarks/             # Code for experimental analysis (section 6)
    │   ├── synthetic           # Synthetic benchmark (section 6.1)
    │   ├── mlp                 # DNN surrogate benchmark (section 6.2)
    ├── renv/                   # renv configuration files to enable a reproducible setup 
    ├── R/                      # Implementation of methods 
    ├── LICENSE
    └── README.md               

Reproducible Setup

To allow for a proper, reproducible setup of the environment we use the package renv.

The project dependencies can be installed via

library("renv")
renv::restore()

Quick Start

# Loading all scripts we need
source("R/tree_splitting.R")
source("R/helper.R")
source("R/marginal_effect.R")
source("R/plot_functions.R")

First, assume we have a surrogate model that we want to analyze.

Here, for example, we tuned a support vector machine on the iris task, and extracted the surrogate model after the last iteration.

library(mlr)
library(mlrMBO)
library(e1071)
library(BBmisc)
library(data.table)

par.set = makeParamSet(
  makeNumericParam("cost", -10, 4, trafo = function(x) 2^x),
  makeNumericParam("gamma", -10, 4, trafo = function(x) 2^x)
)

ctrl = makeMBOControl()
ctrl = setMBOControlInfill(ctrl, crit = makeMBOInfillCritCB(cb.lambda = 1))
ctrl = setMBOControlTermination(ctrl, iters = 5)
tune.ctrl = makeTuneControlMBO(mbo.control = ctrl)
res = tuneParams(makeLearner("classif.svm"), iris.task, cv3, par.set = par.set, control = tune.ctrl,
  show.info = FALSE)
  
surrogate =  res$mbo.result$models[[1]]

print(surrogate)
FALSE Model for learner.id=regr.km; learner.class=regr.km
FALSE Trained on: task.id = data; obs = 13; features = 2
FALSE Hyperparameters: jitter=TRUE,covtype=matern3_2,optim.method=gen,nugget.estim=TRUE

We are computing the PDP estimate with confidence for hyperparameter cost. We use the marginal_effect_sd_over_mean function, which uses the iml packages.

##        cost      mean         sd
## 1 -9.998017 0.8085137 0.12850346
## 2 -9.261563 0.8223581 0.11260680
## 3 -8.525109 0.8271599 0.09651956
## 4 -7.788655 0.8161618 0.07913981
## 5 -7.052201 0.7814865 0.06697429
## 6 -6.315747 0.7200586 0.06511970

We visualize the outcome:

library(ggplot2)

p = plot_pdp_with_uncertainty_1D(me)
print(p)

To improve the uncertainty estimates, we partition the input space. We perform 2 splits and use the L2-objective.

predictor = Predictor$new(model = surrogate, data = data)
effects = FeatureEffect$new(predictor = predictor, feature = "cost", method = "pdp")

tree = compute_tree(effects, data, "SS_L2", 2)

We now want to visualize the PDP in the node with the best objective after 1 split.

plot_pdp_for_node(node = tree[[2]][[2]], testdata = data, model = surrogate, pdp.feature = "cost", grid.size = 20)

Reproduce Experiments

The steps necessary to reproduce the experiments are described here.

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a t

Muhammad Fathy Rashad 643 Dec 30, 2022
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
Text Summarization - WCN — Weighted Contextual N-gram method for evaluation of Text Summarization

Text Summarization WCN — Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa

Aditya Shah 1 Jan 03, 2022
Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch

Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c

Phil Wang 22 Oct 28, 2022
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
Local-Global Stratified Transformer for Efficient Video Recognition

DualFormer This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model

Sea AI Lab 19 Dec 07, 2022
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
Deep Watershed Transform for Instance Segmentation

Deep Watershed Transform Performs instance level segmentation detailed in the following paper: Min Bai and Raquel Urtasun, Deep Watershed Transformati

193 Nov 20, 2022
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
Code for paper "Learning to Reweight Examples for Robust Deep Learning"

learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf

Uber Research 261 Jan 01, 2023
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022