B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

Related tags

Deep LearningBBEA
Overview

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

This is the offical implementation of the aforementioned paper. Graphical Abstract


Abstract

The early pioneering Neural Architecture Search (NAS) works were multi-trial methods applicable to any general search space. The subsequent works took advantage of the early findings and developed weight-sharing methods that assume a structured search space typically with pre-fixed hyperparameters. Despite the amazing computational efficiency of the weight-sharing NAS algorithms, it is becoming apparent that multi-trial NAS algorithms are also needed for identifying very high-performance architectures, especially when exploring a general search space. In this work, we carefully review the latest multi-trial NAS algorithms and identify the key strategies including Evolutionary Algorithm (EA), Bayesian Optimization (BO), diversification, input and output transformations, and lower fidelity estimation. To accommodate the key strategies into a single framework, we develop B2EA that is a surrogate assisted EA with two BO surrogate models and a mutation step in between. To show that B2EA is robust and efficient, we evaluate three performance metrics over 14 benchmarks with general and cell-based search spaces. Comparisons with state-of-the-art multi-trial algorithms reveal that B2EA is robust and efficient over the 14 benchmarks for three difficulty levels of target performance.

Citation

To be updated soon


Requirements

Prerequisite

This project is developed and tested on Linux OS. If you want to run on Windows, we strongly suggest using Linux Subsystem for Windows. To avoid conflicting dependencies, we recommend to create a new virtual enviornment. For this reason, installing Anaconda suitable to the OS system is pre-required to create the virtual environment.

Package Installation

The following is creating an environment and also installing requried packages automatically using conda.

(base) device:path/BBEA$ conda create -n bbea python=3.6
(base) device:path/BBEA$ conda activate bbea
(bbea) device:path/BBEA$ sh install.sh

Tabular Dataset Installation

Pre-evaluated datasets enable to benchmark Hyper-Parameter Optimization(HPO) algorithm performance without hugh computational costs of DNN training.

HPO Benchmark

  • To run algorithms on the HPO-bench dataset, download the database files as follows:
(bbea) device:path/BBEA$ cd lookup
(bbea) device:path/BBEA/lookup$ wget http://ml4aad.org/wp-content/uploads/2019/01/fcnet_tabular_benchmarks.tar.gz
(bbea) device:path/BBEA/lookup$ tar xf fcnet_tabular_benchmarks.tar.gz

Note that *.hdf5 files should be located under /lookup/fcnet_tabular_benchmarks.

Two NAS Benchmarks

  • To run algorithms on the the NAS-bench-101 dataset,
    • download the tfrecord file and save it into /lookup.
    • NAS-bench-101 API requires to install the CPU version of TensorFlow 1.12.
(bbea)device:path/BBEA/lookup$ wget https://storage.googleapis.com/nasbench/nasbench_full.tfrecord

  • To run algorithms on the NAS-bench-201,
    • download NAS-Bench-201-v1_1-096897.pth file in the /lookup according to this doc.
    • NAS-bench-201 API requires to install pytorch CPU version. Refer to pytorch installation guide.
(bbea)device:path/BBEA$ conda install pytorch torchvision cpuonly -c pytorch

DNN Benchmark

  • To run algorithms on the DNN benchmark, download the zip file from the link.
    • Vaildate the file contains CSV files and JSON files in /lookup and /hp_conf, respectively.
    • Unzip the downloaded file and copy two directories into this project. Note the folders already exists in this project.

HPO Run

To run the B2EA algorithms

The experiment using the proposed method of the paper can be performed using the following runner:

  • bbea_runner.py
    • This runner can conduct the experiment that the input arguments have configured.
    • Specifically, the hyperparameter space configuration and the maximum runtime are two mandatory arguments. In the default setting, the names of the search spaces configurations denote the names of JSON configuration files in /hp_conf. The runtime, on the other hand, can be set using seconds. For convenience, 'm', 'h', 'd' can be postfixed to denote minutes, hours, and days.
    • Further detailed options such that the algorithm hyperparameters' setting and the run configuration such as repeated runs are optional.
    • Refer to the help (-h) option as the command line argument.
usage: bbea_runner.py [-h] [-dm] [-bm BENCHMARK_MODE] [-nt NUM_TRIALS]
                      [-etr EARLY_TERM_RULE] [-hd HP_CONFIG_DIR]
                      hp_config exp_time

positional arguments:
  hp_config             Hyperparameter space configuration file name.
  exp_time              The maximum runtime when an HPO run expires.

optional arguments:
  -h, --help            show this help message and exit
  -dm, --debug_mode     Set debugging mode.
  -nt NUM_TRIALS, --num_trials NUM_TRIALS
                        The total number of repeated runs. The default setting
                        is "1".
  -etr EARLY_TERM_RULE, --early_term_rule EARLY_TERM_RULE
                        Early termination rule. A name of compound rule, such
                        as "PentaTercet" or "DecaTercet", can be used. The
                        default setting is DecaTercet.
  -hd HP_CONFIG_DIR, --hp_config_dir HP_CONFIG_DIR
                        Hyperparameter space configuration directory. The
                        default setting is "./hp_conf/"


Results

Experimental results will be saved as JSON files under the /results directory. While the JSON file is human-readable and easily interpretable, we further provide utility functions in the python scripts of the above directory, which can analyze the results and plot the figures shown in the paper.

Owner
SNU ADSL
Applied Data Science Lab., Seoul National University
SNU ADSL
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

Ibai Gorordo 18 Nov 06, 2022
IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales

IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales. In this case, we ended up using XGBoost because it was the o

1 Jan 04, 2022
This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Hand Cricket Table of Content Overview Installation Game rules Project Details Future scope Overview This is a computer vision based implementation of

Abhinav R Nayak 6 Jan 12, 2022
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
Learning to Stylize Novel Views

Learning to Stylize Novel Views [Project] [Paper] Contact: Hsin-Ping Huang ([ema

34 Nov 27, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
The repository contain code for building compiler using puthon.

Building Compiler This is a python implementation of JamieBuild's "Super Tiny Compiler" Overview JamieBuilds developed a wonderfully educative compile

Shyam Das Shrestha 1 Nov 21, 2021
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

ZhouYanzhao 217 Dec 12, 2022
pip install python-office

🍬 python for office 👉 http://www.python4office.cn/ 👈 🌎 English Documentation 📚 简介 Python-office 是一个 Python 自动化办公第三方库,能解决大部分自动化办公的问题。而且每个功能只需一行代码,

程序员晚枫 272 Dec 29, 2022
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
Cross View SLAM

Cross View SLAM This is the associated code and dataset repository for our paper I. D. Miller et al., "Any Way You Look at It: Semantic Crossview Loca

Ian D. Miller 99 Dec 09, 2022