Self-Supervised Contrastive Learning of Music Spectrograms

Overview

Self-Supervised Music Analysis

Self-Supervised Contrastive Learning of Music Spectrograms

Dataset

Songs on the Billboard Year End Hot 100 were collected from the years 1960-2020. This list tracks the top songs of the US market for a given calendar year based on aggregating metrics including streaming plays, physical and digital purchases, radio plays, etc. In total the dataset includes 5737 songs, excluding some songs which could not be found and some which are duplicates across multiple years. It’s worth noting that the types of songs that are able to make it onto this sort of list represent a very narrow subset of the overall variety of the US music market, let alone the global music market. So while we can still learn some interesting things from this dataset, we shouldn’t mistake it for being representative of music in general.

Raw audio files were processed into spectrograms using a synchrosqueeze CWT algorithm from the ssqueezepy python library. Some additional cleaning and postprocessing was done and the spectrograms were saved as grayscale images. These images are structured so that the Y axis which spans 256 pixels represents a range of frequencies from 30Hz – 12kHz with a log scale. The X axis represents time with a resolution of 200 pixels per second. Pixel intensity therefore encodes the signal energy at a particular frequency at a moment in time.

The full dataset can be found here: https://www.kaggle.com/tpapp157/billboard-hot-100-19602020-spectrograms

Model and Training

A 30 layer ResNet styled CNN architecture was used as the primary feature extraction network. This was augmented with learned position embeddings along the frequency axis inserted at regular block intervals. Features were learned in a completely self-supervised fashion using Contrastive Learning. Matched pairs were taken as random 256x1024 pixel crops (corresponding to ~5 seconds of audio) from each song with no additional augmentations.

Output feature vectors have 512 channels representing a 64 pixel span (~0.3 seconds of audio).

Results

The entirety of each song was processed via the feature extractor with the resulting song matrix averaged across the song length into a single vector. UMAP is used for visualization and HDBSCAN for cluster extraction producing the following plot:

Each color represents a cluster (numbered 0-16) of similar songs based on the learned features. Immediately we can see a very clear structure in the data, showing the meaningful features have been learned. We can also color the points by year of release:

Points are colored form oldest (dark) to newest (light). As expected, the distribution of music has changed over the last 60 years. This gives us some confidence that the learned features are meaningful but let’s try a more specific test. A gradient boosting regressor model is trained on the learned features to predict the release year of a song.

The model achieves an overall mean absolute error of ~6.2 years. The violin and box plots show the distribution of predictions for songs in each year. This result is surprisingly good considering we wouldn’t expect a model get anywhere near perfect. The plot shows some interesting trends in how the predicted median and overall variance shift from year to year. Notice, for example, the high variance and rapid median shift across the years 1990 to 2000 compared to the decades before and after. This hints at some potential significant changes in the structure of music during this decade. Those with a knowledge of modern musical history probably already have some ideas in mind. Again, it’s worth noting that this dataset represents generically popular music which we would expect to lag behind specific music trends (probably by as much as 5-10 years).

Let’s bring back the 17 clusters that were identified previously and look at the distribution of release years of songs in each cluster. The black grouping labeled -1 captures songs which were not strongly allocated to any particular cluster and is simply included for completeness.

Here again we see some interesting trends of clusters emerging, peaking, and even dying out at various points in time. Aligning with out previous chart, we see four distinct clusters (7, 10, 11, 12) die off in the 90s while two brand new clusters (3, 4) emerge. Other clusters (8, 9, 15), interestingly, span most or all of the time range.

We can also look at the relative allocation of songs to clusters by year to get a better sense of the overall size of each cluster.

Cluster Samples

So what exactly are these clusters? I’ve provided links below to ten representative songs from each cluster so you can make your own qualitative evaluation. Before going further and listening to these songs I want to encourage you loosen your preconceived notions of musical genre. Popular conception of musical genres typically includes non-musical aspects like lyrics, theme, particular instruments, artist demographics, singer accent, year of release, marketing, etc. These aspects are not captured in the dataset and therefore not represented below but with an open ear you may find examples of songs that you considered to be different genres are actually quite musically similar.

Cluster 0

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Cluster 8

Cluster 9

Cluster 10

Cluster 11

Cluster 12

Cluster 13

Cluster 14

Cluster 15

Cluster 16

This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
一个多模态内容理解算法框架,其中包含数据处理、预训练模型、常见模型以及模型加速等模块。

Overview 架构设计 插件介绍 安装使用 框架简介 方便使用,支持多模态,多任务的统一训练框架 能力列表: bert + 分类任务 自定义任务训练(插件注册) 框架设计 框架采用分层的思想组织模型训练流程。 DATA 层负责读取用户数据,根据 field 管理数据。 Parser 层负责转换原

Tencent 265 Dec 22, 2022
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Pan Lu 81 Dec 27, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
Prososdy Morph: A python library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

ProMo (Prosody Morph) Questions? Comments? Feedback? Chat with us on gitter! A library for manipulating pitch and duration in an algorithmic way, for

Tim 71 Jan 02, 2023
An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.

Bottom-Up and Top-Down Attention for Visual Question Answering An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge. The

Hengyuan Hu 731 Jan 03, 2023
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
Curating a dataset for bioimage transfer learning

CytoImageNet A large-scale pretraining dataset for bioimage transfer learning. Motivation In past few decades, the increase in speed of data collectio

Stanley Z. Hua 9 Jun 20, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
An implementation of an abstract algebra for music tones (pitches).

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

Open Music Kit 0 Oct 10, 2022