TLA - Twitter Linguistic Analysis

Related tags

Text Data & NLPTLA
Overview

TLA - Twitter Linguistic Analysis

Tool for linguistic analysis of communities

TLA is built using PyTorch, Transformers and several other State-of-the-Art machine learning techniques and it aims to expedite and structure the cumbersome process of collecting, labeling, and analyzing data from Twitter for a corpus of languages while providing detailed labeled datasets for all the languages. The analysis provided by TLA will also go a long way in understanding the sentiments of different linguistic communities and come up with new and innovative solutions for their problems based on the analysis. List of languages our library provides support for are listed as follows:

Language Code Language Code
English en Hindi hi
Swedish sv Thai th
Dutch nl Japanese ja
Turkish tr Urdu ur
Indonesian id Portuguese pt
French fr Chinese zn-ch
Spanish es Persian fa
Romainain ro Russian ru

Features

  • Provides 16 labeled Datasets for different languages for analysis.
  • Implements Bert based architecture to identify languages.
  • Provides Functionalities to Extract,process and label tweets from twitter.
  • Provides a Random Forest classifier to implement sentiment analysis on any string.

Installation :

pip install --upgrade https://github.com/tusharsarkar3/TLA.git

Overview

Extract data
from TLA.Data.get_data import store_data
store_data('en',False)

This will extract and store the unlabeled data in a new directory inside data named datasets.

Label data
from TLA.Datasets.get_lang_data import language_data
df = language_data('en')
print(df)

This will print the labeled data that we have already collected.

Classify languages
Training

Training can be done in the following way:

from TLA.Lang_Classify.train import train_lang
train_lang(path_to_dataset,epochs)
Prediction

Inference is done in the following way:

from TLA.Lang_Classify.predict import predict
model = get_model(path_to_weights)
preds = predict(dataframe_to_be_used,model)
Analyse
Training

Training can be done in the following way:

from TLA.Analyse.train_rf import train_rf
train_rf(path_to_dataset)

This will store all the vectorizers and models in a seperate directory named saved_rf and saved_vec and they are present inside Analysis directory. Further instructions for training multiple languages is given in the next section which shows how to run the commands using CLI

Final Analysis

Analysis is done in the following way:

from TLA.Analysis.analyse import analyse_data 
analyse_data(path_to_weights)

This will store the final analysis as .csv inside a new directory named analysis.

Overview with Git

Installation another method
git clone https://github.com/tusharsarkar3/TLA.git
Extract data Navigate to the required directory
cd Data

Run the following command:

python get_data.py --lang en --process True

Lang flag is used to input the language of the dataset that is required and process flag shows where pre-processing should be done before returning the data. Give the following codes in the lang flag wrt the required language:

Loading Dataset

To load a dataset run the following command in python.

df= pd.read_csv("TLA/TLA/Datasets/get_data_en.csv")
 

The command will return a dataframe consisting of the data for the specific language requested.

In the phrase get_data_en, en can be sunstituted by the desired language code to load the dataframe for the specific language.

Pre-Processing

To preprocess a given string run the following command.

In your terminal use code

cd Data

then run the command in python

from TLA.Data import Pre_Process_Tweets

df=Pre_Process_Tweets.pre_process_tweet(df)

Here the function pre_process_tweet takes an input as a dataframe of tweets and returns an output of a dataframe with the list of preprocessed words for a particular tweet next to the tweet in the dataframe.

Analysis Training To train a random forest classifier for the purpose of sentiment analysis run the following command in your terminal.
cd Analysis

then

python train.rf --path "path to your datafile" --train_all_datasets False

here the --path flag represents the path to the required dataset you want to train the Random Forest Classifier on the --train_all_datasets flag is a boolean which can be used to train the model on multiple datasets at once.

The output is a file with the a .pkl file extention saved in the folder at location "TLA\Analysis\saved_rf{}.pkl" The output for vectorization of is stored in a .pkl file in the directory "TLA\Analysis\saved_vec{}.pkl"

Get Sentiment

To get the sentiment of any string use the following code.

In your terminal type

cd Analysis

then in your terminal type

python get_sentiment.py --prediction "Your string for prediction to be made upon" --lang "en"

here the --prediction flag collects the string for which you want to get the sentiment for. the --lang represents the language code representing the language you typed your string in.

The output is a sentiment which is either positive or negative depending on your string.

Statistics

To get a comprehensive statistic on sentiment of datasets run the following command.

In your terminal type

cd Analysis

then

python analyse.py 

This will give you an output of a table1.csv file at the location 'TLA\Analysis\analysis\table1.csv' comprising of statistics relating to the percentage of positive or negative tweets for a given language dataset.

It will also give a table2.csv file at 'TLA\Analysis\analysis\table2.csv' comprising of statistics for all languages combined.

Language Classification Training To train a model for language classfication on a given dataset run the following commands.

In your terminal run

cd Lang_Classify

then run

python train.py --data "path for your dataset" --model "path to weights if pretrained" --epochs 4

The --data flag requires the path to your training dataset.

The --model flag requires the path to the model you want to implement

The --epoch flag represents the epochs you want to train your model for.

The output is a file with a .pt extention named saved_wieghts_full.pt where your trained wieghst are stored.

Prediction To make prediction on any given string Us ethe following code.

In your terminal type

cd Lang_Classify

then run the code

python predict.py --predict "Text/DataFrame for language to predicted" --weights " Path for the stored weights of your model " 

The --predict flag requires the string you want to get the language for.

The --wieghts flag is the path for the stored wieghts you want to run your model on to make predictions.

The outputs is the language your string was typed in.


Results:

img

Performance of TLA ( Loss vs epochs)

Language Total tweets Positive Tweets Percentage Negative Tweets Percentage
English 500 66.8 33.2
Spanish 500 61.4 38.6
Persian 50 52 48
French 500 53 47
Hindi 500 62 38
Indonesian 500 63.4 36.6
Japanese 500 85.6 14.4
Dutch 500 84.2 15.8
Portuguese 500 61.2 38.8
Romainain 457 85.55 14.44
Russian 213 62.91 37.08
Swedish 420 80.23 19.76
Thai 424 71.46 28.53
Turkish 500 67.8 32.2
Urdu 42 69.04 30.95
Chinese 500 80.6 19.4

Reference:

@misc{sarkar2021tla,
     title={TLA: Twitter Linguistic Analysis}, 
     author={Tushar Sarkar and Nishant Rajadhyaksha},
     year={2021},
     eprint={2107.09710},
     archivePrefix={arXiv},
     primaryClass={cs.CL}
}
@misc{640cba8b-35cb-475e-ab04-62d079b74d13,
 title = {TLA: Twitter Linguistic Analysis},
 author = {Tushar Sarkar and Nishant Rajadhyaksha},
  journal = {Software Impacts},
 doi = {10.24433/CO.6464530.v1}, 
 howpublished = {\url{https://www.codeocean.com/}},
 year = 2021,
 month = {6},
 version = {v1}
}

Features to be added :

  • Access to more language
  • Creating GUI based system for better accesibility
  • Improving performance of the baseline model

Developed by Tushar Sarkar and Nishant Rajadhyaksha

Owner
Tushar Sarkar
I love solving problems with data
Tushar Sarkar
PocketSphinx is a lightweight speech recognition engine, specifically tuned for handheld and mobile devices, though it works equally well on the desktop

molten A minimal, extensible, fast and productive API framework for Python 3. Changelog: https://moltenframework.com/changelog.html Community: https:/

3.2k Dec 28, 2022
Connectionist Temporal Classification (CTC) decoding algorithms: best path, beam search, lexicon search, prefix search, and token passing. Implemented in Python.

CTC Decoding Algorithms Update 2021: installable Python package Python implementation of some common Connectionist Temporal Classification (CTC) decod

Harald Scheidl 736 Jan 03, 2023
HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools

HuggingSound HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools. I have no intention of building a very complex tool here.

Jonatas Grosman 247 Dec 26, 2022
a CTF web challenge about making screenshots

screenshotter (web) A CTF web challenge about making screenshots. It is inspired by a bug found in real life. The challenge was created by @LiveOverfl

219 Jan 02, 2023
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Samuel Sharkey 1 Feb 07, 2022
AMUSE - financial summarization

AMUSE AMUSE - financial summarization Unzip data.zip Train new model: python FinAnalyze.py --task train --start 0 --count how many files,-1 for all

1 Jan 11, 2022
A library for Multilingual Unsupervised or Supervised word Embeddings

MUSE: Multilingual Unsupervised and Supervised Embeddings MUSE is a Python library for multilingual word embeddings, whose goal is to provide the comm

Facebook Research 3k Jan 06, 2023
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

中文开放信息抽取系统, open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

7 Nov 02, 2022
Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized

texttron 193 Jan 04, 2023
Text-to-Speech for Belarusian language

title emoji colorFrom colorTo sdk app_file pinned Belarusian TTS 🐸 green green gradio app.py false Belarusian TTS 📢 🤖 Belarusian TTS (text-to-speec

Yurii Paniv 1 Nov 27, 2021
Protein Language Model

ProteinLM We pretrain protein language model based on Megatron-LM framework, and then evaluate the pretrained model results on TAPE (Tasks Assessing P

THUDM 77 Dec 27, 2022
Utility for Google Text-To-Speech batch audio files generator. Ideal for prompt files creation with Google voices for application in offline IVRs

Google Text-To-Speech Batch Prompt File Maker Are you in the need of IVR prompts, but you have no voice actors? Let Google talk your prompts like a pr

Ponchotitlán 1 Aug 19, 2021
Research Code for NeurIPS 2020 Spotlight paper "Large-Scale Adversarial Training for Vision-and-Language Representation Learning": UNITER adversarial training part

VILLA: Vision-and-Language Adversarial Training This is the official repository of VILLA (NeurIPS 2020 Spotlight). This repository currently supports

Zhe Gan 109 Dec 31, 2022
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
NLP: SLU tagging

NLP: SLU tagging

北海若 3 Jan 14, 2022
Minimal GUI for accessing the Watson Text to Speech service.

Description Minimal graphical application for accessing the Watson Text to Speech service. Requirements Python 3 plus all dependencies listed in requi

Moritz Maxeiner 1 Oct 22, 2021
Searching keywords in PDF file folders

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

1 Nov 08, 2021
Text Normalization(文本正则化)

Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002

Jason_Zhang 0 Feb 26, 2022
Search-Engine - 📖 AI based search engine

Search Engine AI based search engine that was trained on 25000 samples, feel free to train on up to 1.2M sample from kaggle dataset, link below StackS

Vladislav Kruglikov 2 Nov 29, 2022