Grammar Induction using a Template Tree Approach

Related tags

Deep Learninggitta
Overview

Gitta

Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on datasets that have latent templates, e.g. forum topics, writing prompts and output from template-based text generators. The found context-free grammars can easily be converted into grammars for use in grammar languages such as Tracery & Babbly.

Demo

A demo for Gitta can be found & executed on Google Colaboratory.

Example

dataset = [
    "I like cats and dogs",
    "I like bananas and geese",
    "I like geese and cats",
    "bananas are not supposed to be in a salad",
    "geese are not supposed to be in the zoo",
]
induced_grammar = grammar_induction.induce_grammar_using_template_trees(
    dataset,
    relative_similarity_threshold=0.1,
)
print(induced_grammar)
print(induced_grammar.generate_all())

Outputs as grammar:

{
    "origin": [
        "<B> are not supposed to be in <C>",
        "I like <B> and <B>"
    ],
    "B": [
        "bananas",
        "cats",
        "dogs",
        "geese"
    ],
    "C": [
        "a salad",
        "the zoo"
    ]
}

Which in turn generates all these texts:

{"dogs are not supposed to be in the zoo",
"cats are not supposed to be in a salad",
"I like geese and cats",
"cats are not supposed to be in the zoo", 
bananas are not supposed to be in a salad",
"I like dogs and dogs",
"bananas are not supposed to be in the zoo",
"I like dogs and bananas",
"geese are not supposed to be in the zoo",
"geese are not supposed to be in a salad",
"I like cats and dogs",
"I like dogs and geese",
"I like cats and bananas",
"I like bananas and dogs",
"I like bananas and bananas",
"I like cats and geese",
"I like geese and dogs",
"I like dogs and cats",
"I like geese and bananas",
"I like bananas and geese",
"dogs are not supposed to be in a salad",
"I like cats and cats",
"I like geese and geese",
"I like bananas and cats"}

Performance

We tested out this grammar induction algorithm on Twitterbots using the Tracery grammar modelling tool. Gitta only saw either 25, 50 or 100 example generations, and had to introduce a grammar that could generate similar texts. Every setting was run 5 times, and the median number of in-language texts (generations that were also produced by the original grammar) and not in-language texts (texts that the induced grammar generated, but not the original grammar). The median number of production rules is also included, to show its generalisation performance.

Grammar 25 examples 50 examples 100 examples
Name # generations size in lang not in lang size in lang not in lang size in lang not in lang size
botdoesnot 380292 363 648 0 64 2420 0 115 1596 4 179
BotSpill 43452 249 75 0 32 150 0 62 324 0 126
coldteabot 448 24 39 0 38 149 19 63 388 9 78
hometapingkills 4080 138 440 0 48 1184 3240 76 2536 7481 106
InstallingJava 390096 95 437 230 72 2019 1910 146 1156 3399 228
pumpkinspiceit 6781 6885 25 0 26 50 0 54 100 8 110
SkoolDetention 224 35 132 0 31 210 29 41 224 29 49
soundesignquery 15360 168 256 179 52 76 2 83 217 94 152
whatkilledme 4192 132 418 0 45 1178 0 74 2646 0 108
Whinge_Bot 450805 870 3092 6 80 16300 748 131 59210 1710 222

Credits & Paper citation

If you like this work, consider following me on Twitter. If use this work in an academic context, please consider citing the following paper:

@article{winters2020gitta,
    title={Discovering Textual Structures: Generative Grammar Induction using Template Trees},
    author={Winters, Thomas and De Raedt, Luc},
    journal={Proceedings of the 11th International Conference on Computational Creativity},
    pages = {177-180},
    year={2020},
    publisher={Association for Computational Creativity}
}

Or APA style:

Winters, T., & De Raedt, L. (2020). Discovering Textual Structures: Generative Grammar Induction using Template Trees. Proceedings of the 11th International Conference on Computational Creativity.
Owner
Thomas Winters
PhD Researcher in Creative Artificial Intelligence @ KU Leuven.
Thomas Winters
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
Deep Learning to Improve Breast Cancer Detection on Screening Mammography

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Deep Learning to Improve Breast

Li Shen 305 Jan 03, 2023
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Project looking into use of autoencoder for semi-supervised learning and comparing data requirements compared to supervised learning.

Tom-R.T.Kvalvaag 2 Dec 17, 2021
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation".

Prompt-Based Multi-Modal Image Segmentation This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation". The sys

Timo Lüddecke 305 Dec 30, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
MEND: Model Editing Networks using Gradient Decomposition

MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a

Eric Mitchell 141 Dec 02, 2022
PyTorch Implementation of ECCV 2020 Spotlight TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images

TuiGAN-PyTorch Official PyTorch Implementation of "TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images" (ECCV 2020 Spotligh

181 Dec 09, 2022
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022