Simple (but Strong) Baselines for POMDPs

Overview

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs

Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specifically the recurrent model-free RL, for the following paper

Paper: arXiv Numeric Results: google drive

by Tianwei Ni, Benjamin Eysenbach and Ruslan Salakhutdinov.

Installation

First download this repo into your local directory (preferably on a cluster or a server) <local_path>. Then we recommend to use a virtual env to install all the dependencies. For example, we install using miniconda:

conda env create -f install.yml
conda activate pomdp

The yaml file includes all the dependencies (e.g. PyTorch, PyBullet) used in our experiments (including compared methods), but there are two exceptions:

  • To run Cheetah-Vel in meta RL, you have to install MuJoCo with a license
  • To run robust RL and generalization in RL experiments, you have to install roboschool.
    • We found it hard to install roboschool from scratch, therefore we provide a docker file roboschool.sif in google drive that contains roboschool and the other necessary libraries, adapted from SunBlaze repo.
    • To download and activate the docker file by singularity on a cluster (on a single server should be similar):
    # download roboschool.sif from the google drive to envs/rl-generalization/roboschool.sif
    # then run singularity shell
    singularity shell --nv -H <local_path>:/home envs/rl-generalization/roboschool.sif
    • Then you can test it by import roboschool in a python3 shell.

General Form to Run Our Implementation of Recurrent Model-Free RL and Compared Methods

Basically, we use .yml file in configs/ folder for each subarea of POMDPs. To run our implementation, in <local_path> simply use

export PYTHONPATH=${PWD}:$PYTHONPATH
python3 policies/main.py configs/<subarea>/<env_name>/<algo_name>.yml

where algo_name specifies the algorithm name:

  • sac_rnn and td3_rnn correspond to our implementation of recurrent model-free RL
  • ppo_rnn and a2c_rnn correspond to (Kostrikov, 2018) implementation of recurrent model-free RL
  • vrm corresponds to VRM compared in "standard" POMDPs
  • varibad corresponds the off-policy version of original VariBAD compared in meta RL
  • MRPO correspond to MRPO compared in robust RL

We have merged the prior methods above into our repository (there is no need to install other repositories), so that future work can use this single repository to run a number of baselines besides ours: A2C-GRU, PPO-GRU, VRM, VariBAD, MRPO. Since our code is heavily drawn from those prior works, we encourage authors to cite those prior papers or implementations. For the compared methods, we use their open-sourced implementation with their default hyperparameters.

Specific Running Commands for Each Subarea

Please see run_commands.md for details on running our implementation of recurrent model-free RL and also all the compared methods.

A Minimal Example to Run Our Implementation

Here we provide a stand-alone minimal example with the least dependencies to run our implementation of recurrent model-free RL!

Only requires PyTorch and PyBullet, no need to install MuJoCo or roboschool, no external configuration file.

Simply open the Jupyter Notebook example.ipynb and it contains the training and evaluation procedure on a toy POMDP environment (Pendulum-V). It only costs < 20 min to run the whole process.

Details of Our Implementation of Recurrent Model-Free RL: Decision Factors, Best Variants, Code Features

Please see our_details.md for more information on:

  • How to tune the decision factors discussed in the paper in the configuration files
  • How to tune the other hyperparameters that are also important to training
  • Where is the core class of our recurrent model-free RL and the RAM-efficient replay buffer
  • Our best variants in subarea and numeric results on all the bar charts and learning curves

Acknowledgement

Please see acknowledge.md for details.

Citation

If you find our code useful to your work, please consider citing our paper:

@article{ni2021recurrentrl,
  title={Recurrent Model-Free RL is a Strong Baseline for Many POMDPs},
  author={Ni, Tianwei and Eysenbach, Benjamin and Salakhutdinov, Ruslan},
  year={2021}
}

Contact

If you have any questions, please create an issue in this repo or contact Tianwei Ni ([email protected])

Owner
Tianwei V. Ni
Efficient coding excites me. Good research surprises me.
Tianwei V. Ni
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
Python SDK for building, training, and deploying ML models

Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (

Kubeflow 325 Dec 13, 2022
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
Adversarial Self-Defense for Cycle-Consistent GANs

Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape

Dina Bashkirova 10 Oct 10, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
PURE: End-to-End Relation Extraction

PURE: End-to-End Relation Extraction This repository contains (PyTorch) code and pre-trained models for PURE (the Princeton University Relation Extrac

Princeton Natural Language Processing 657 Jan 09, 2023
Flexible Option Learning - NeurIPS 2021

Flexible Option Learning This repository contains code for the paper Flexible Option Learning presented as a Spotlight at NeurIPS 2021. The implementa

Martin Klissarov 7 Nov 09, 2022
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
Soomvaar is the repo which 🏩 contains different collection of 👨‍💻🚀code in Python and 💫✨Machine 👬🏼 learning algorithms📗📕 that is made during 📃 my practice and learning of ML and Python✨💥

Soomvaar 📌 Introduction Soomvaar is the collection of various codes implement in machine learning and machine learning algorithms with python on coll

Felix-Ayush 42 Dec 30, 2022
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022