PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

Overview

PERIN: Permutation-invariant Semantic Parsing

David Samuel & Milan Straka

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics


Paper
Pretrained models
Interactive demo on Google Colab

Overall architecture



PERIN is a universal sentence-to-graph neural network architecture modeling semantic representation from input sequences.

The main characteristics of our approach are:

  • Permutation-invariant model: PERIN is, to our best knowledge, the first graph-based semantic parser that predicts all nodes at once in parallel and trains them with a permutation-invariant loss function.
  • Relative encoding: We present a substantial improvement of relative encoding of node labels, which allows the use of a richer set of encoding rules.
  • Universal architecture: Our work presents a general sentence-to-graph pipeline adaptable for specific frameworks only by adjusting pre-processing and post-processing steps.

Our model was ranked among the two winning systems in both the cross-framework and the cross-lingual tracks of MRP 2020 and significantly advanced the accuracy of semantic parsing from the last year's MRP 2019.



This repository provides the official PyTorch implementation of our paper "ÚFAL at MRP 2020: Permutation-invariant Semantic Parsing in PERIN" together with pretrained base models for all five frameworks from MRP 2020: AMR, DRG, EDS, PTG and UCCA.



How to run

🐾   Clone repository and install the Python requirements

git clone https://github.com/ufal/perin.git
cd perin

pip3 install -r requirements.txt 
pip3 install git+https://github.com/cfmrp/mtool.git#egg=mtool

🐾   Download and pre-process the dataset

Download the treebanks into ${data_dir} and split the cross-lingual datasets into training and validation parts by running:

./scripts/split_dataset.sh "path_to_a_dataset.mrp"

Preprocess and cache the dataset (computing the relative encodings can take up to several hours):

python3 preprocess.py --config config/base_amr.yaml --data_directory ${data_dir}

You should also download CzEngVallex if you are going to parse PTG:

curl -O https://lindat.mff.cuni.cz/repository/xmlui/bitstream/handle/11234/1-1512/czengvallex.zip
unzip czengvallex.zip
rm frames_pairs.xml czengvallex.zip

🐾   Train

To train a shared model for the English and Chinese AMR, run the following script. Other configurations are located in the config folder.

python3 train.py --config config/base_amr.yaml --data_directory ${data_dir} --save_checkpoints --log_wandb

Note that the companion file in needed only to provide the lemmatized forms, so it's also possible to train without it (but that will most likely negatively influence the accuracy of label prediction) -- just set the companion paths to None.

🐾   Inference

You can run the inference on the validation and test datasets by running:

python3 inference.py --checkpoint "path_to_pretrained_model.h5" --data_directory ${data_dir}

Citation

@inproceedings{Sam:Str:20,
  author = {Samuel, David and Straka, Milan},
  title = {{{\'U}FAL} at {MRP}~2020:
           {P}ermutation-Invariant Semantic Parsing in {PERIN}},
  booktitle = CONLL:20:U,
  address = L:CONLL:20,
  pages = {\pages{--}{53}{64}},
  year = 2020
}
Owner
ÚFAL
Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University
ÚFAL
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch

Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch Reference Paper URL Author: Yi Tay, Dara Bahri, Donald Metzler

Myeongjun Kim 66 Nov 30, 2022
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
Controlling the MicriSpotAI robot from scratch

Abstract: The SpotMicroAI project is designed to be a low cost, easily built quadruped robot. The design is roughly based off of Boston Dynamics quadr

Florian Wilk 405 Jan 05, 2023
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022
StorSeismic: An approach to pre-train a neural network to store seismic data features

StorSeismic: An approach to pre-train a neural network to store seismic data features This repository contains codes and resources to reproduce experi

Seismic Wave Analysis Group 11 Dec 05, 2022
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement This is the repository for the paper "Improving the Accuracy-Memory Trad

3 Dec 29, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare

Mohamadreza Rezaei 1 Jan 19, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022
Convert scikit-learn models to PyTorch modules

sk2torch sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript. Problems

Alex Nichol 101 Dec 16, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022