使用yolov5训练自己数据集(详细过程)并通过flask部署

Overview

使用yolov5训练自己的数据集(详细过程)并通过flask部署

依赖库

  • torch
  • torchvision
  • numpy
  • opencv-python
  • lxml
  • tqdm
  • flask
  • pillow
  • tensorboard
  • matplotlib
  • pycocotools

Windows,请使用 pycocotools-windows 代替 pycocotools

1.准备数据集

这里以PASCAL VOC数据集为例,提取码: 07wp 将获取的数据集放到datasets目录下 数据集结构如下:

---VOC2012
--------Annotations
---------------xml0
---------------xml1
--------JPEGImages
---------------img0
---------------img1
--------pascal_voc_classes.txt

Annotations为所有的xml文件,JPEGImages为所有的图片文件,pascal_voc_classes.txt为类别文件。

获取标签文件

yolo标签文件的格式如下:

102 0.682813 0.415278 0.237500 0.502778
102 0.914844 0.396528 0.168750 0.451389

第一位 label,为图片中物体的类别
后面四位为图片中物体的位置,(xcenter, ycenter, h, w)即目标物体中心位置的相对坐标和相对高宽
上图中存在两个目标

如果你已经拥有如上的label文件,可直接跳到下一步。 没有如上标签文件,可使用 labelimg 提取码 dbi2 打标签。生成xml格式的label文件,再转为yolo格式的label文件。labelimg的使用非常简单,在此不在赘述。

xml格式的label文件转为yolo格式:

python center/xml_yolo.py

pascal_voc_classes.txt,为你的类别对应的json文件。如下为voc数据集类别格式。

["aeroplane","bicycle", "bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train", "tvmonitor"]

运行上面代码后的路径结构

---VOC2012
--------Annotations
--------JPEGImages
--------pascal_voc_classes.json
---yolodata
--------images
--------labels

2.划分训练集和测试集

训练集和测试集的划分很简单,将原始数据打乱,然后按 9 :1划分为训练集和测试集即可。代码如下:

python center/get_train_val.py
运行上面代码会生成如下路径结构
---VOC2012
--------Annotations
--------JPEGImages
--------pascal_voc_classes.json
---yolodata
--------images
--------labels
---traindata
--------images
----------------train
----------------val
--------labels
----------------train
----------------val
traindata就是最后需要的训练文件

3. 训练模型

yolov5的训练很简单,本文已将代码简化,代码结构如下:

dataset             # 数据集
------traindata     # 训练数据集
inference           # 输入输出接口
------inputs        # 输入数据
------outputs       # 输出数据
config              # 配置文件
------score.yaml    # 训练配置文件
------yolov5l.yaml  # 模型配置文件
models              # 模型代码
runs	            # 日志文件
utils               # 代码文件
weights             # 模型保存路径,last.pt,best.pt
train.py            # 训练代码
detect.py           # 测试代码

score.yaml解释如下:

# train and val datasets (image directory)
train: ./datasets/traindata/images/train/
val: ./datasets/traindata/images/val/
# number of classes
nc: 2
# class names
names: ['苹果','香蕉']
  • train: 为图像数据的train,地址
  • val: 为图像数据的val,地址
  • nc: 为类别个数
  • names: 为类别对应的名称
yolov5l.yaml解释如下:
nc: 2 # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 1-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4
   [-1, 3, Bottleneck, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 4-P3/8
   [-1, 9, BottleneckCSP, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 6-P4/16
   [-1, 9, BottleneckCSP, [512]],
   [-1, 1, Conv, [1024, 3, 2]], # 8-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 6, BottleneckCSP, [1024]],  # 10
  ]
head:
  [[-1, 3, BottleneckCSP, [1024, False]],  # 11
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]],  # 12 (P5/32-large)
   [-2, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 1, Conv, [512, 1, 1]],
   [-1, 3, BottleneckCSP, [512, False]],
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]],  # 17 (P4/16-medium)
   [-2, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 3, BottleneckCSP, [256, False]],
   [-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]],  # 22 (P3/8-small)
   [[], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]
  • nc:为目标类别个数
  • depth_multiple 和 width_multiple:控制模型深度和宽度。不同的参数对应:s,m,l,x 模型。
  • anchors: 为对输入的目标框通过k-means聚类产生的基础框,通过这个基础框去预测目标的box。
  • yolov5会自动产生anchors,yolov5采用欧氏距离进行k-means聚类,再使用遗传算法做一系列的变异得到最终的anchors。但是本人采用欧氏距离进行k-means聚类得到的效果不如采用 1 - iou进行k-means聚类的效果。如果想要 1 - iou 进行k-means聚类源码请私聊我。但是效果其实相差无几。
  • backbone: 为图像特征提取部分的网络结构。
  • head: 为最后的预测部分的网络结构

#####train.py配置十分简单: 在这里插入图片描述

我们仅需修改如下参数即可

epoch:         控制训练迭代的次数
batch_size     输入迭代的图片数量
cfg:           配置网络模型路径
data:          训练配置文件路径
weights:       载入模型,进行断点继续训练

终端运行(默认yolov5l)

 python train.py

即可开始训练。

训练过程

训练结果

4. 测试模型

需要需改三个参数
source:        需要检测的images/videos路径
out:		保存结果的路径
weights:       训练得到的模型权重文件的路径
你也可以使用在coco数据集上的权重文件进行测试将他们放到weights文件夹下

提取码:hhbb

终端运行

 python detect.py

即可开始检测。

测试结果

5.通过flask部署

flask的部署是非简单。如果有不明白的可以参考我之前的博客。

阿里云ECS部署python,flask项目,简单易懂,无需nginx和uwsgi

基于yolov3-deepsort-flask的目标检测和多目标追踪web平台

终端运行

 python app.py

即可开始跳转到网页,上传图片进行检测。

Owner
HB.com
HB.com
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
Bounding Wasserstein distance with couplings

BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar

Niloy Biswas 1 Jan 11, 2022
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022
🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022