Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

Overview

A Shared Representation for Photorealistic Driving Simulators

The official code for the paper: "A Shared Representation for Photorealistic Driving Simulators" , paper, arXiv

A Shared Representation for Photorealistic Driving Simulators
Saeed Saadatnejad, Siyuan Li, Taylor Mordan, Alexandre Alahi, 2021. A powerful simulator highly decreases the need for real-world tests when training and evaluating autonomous vehicles. Data-driven simulators flourished with the recent advancement of conditional Generative Adversarial Networks (cGANs), providing high-fidelity images. The main challenge is synthesizing photo-realistic images while following given constraints. In this work, we propose to improve the quality of generated images by rethinking the discriminator architecture. The focus is on the class of problems where images are generated given semantic inputs, such as scene segmentation maps or human body poses. We build on successful cGAN models to propose a new semantically-aware discriminator that better guides the generator. We aim to learn a shared latent representation that encodes enough information to jointly do semantic segmentation, content reconstruction, along with a coarse-to-fine grained adversarial reasoning. The achieved improvements are generic and simple enough to be applied to any architecture of conditional image synthesis. We demonstrate the strength of our method on the scene, building, and human synthesis tasks across three different datasets.

Example

Getting Started

These instructions will get you a copy of the project up and running on your local machine for development and testing purposes.

  1. Clone this repo.
git clone https://github.com/vita-epfl/SemDisc.git
cd ./SemDisc

Prerequisites

  1. Please install dependencies by
pip install -r requirements.txt

Dataset Preparation

  1. The cityscapes dataset can be downloaded from here: cityscapes

For the experiment, you will need to download [gtFine_trainvaltest.zip] and [leftImg8bit_trainvaltest.zip] and unzip them.

Training

After preparing all necessary environments and the dataset, activate your environment and start to train the network.

Training with the semantic-aware discriminator

The training is doen in two steps. First, the network is trained without only the adversarial head of D:

python train.py --name spade_semdisc --dataset_mode cityscapes --netG spade --c2f_sem_rec --normalize_smaps \
--checkpoints_dir <checkpoints path> --dataroot <data path> \
--lambda_seg 1 --lambda_rec 1 --lambda_GAN 35 --lambda_feat 10 --lambda_vgg 10 --fine_grained_scale 0.05 \
--niter_decay 0 --niter 100 \
--aspect_ratio 1 --load_size 256 --crop_size 256 --batchSize 16 --gpu_ids 0

After the network is trained for some epochs, we finetune it with the complete D:

python train.py --name spade_semdisc --dataset_mode cityscapes --netG spade --c2f_sem_rec --normalize_smaps \
--checkpoints_dir <checkpoints path> --dataroot <data path> \
--lambda_seg 1 --lambda_rec 1 --lambda_GAN 35 --lambda_feat 10 --lambda_vgg 10 --fine_grained_scale 0.05 \
--niter_decay 100 --niter 100 --continue_train --active_GSeg \
--aspect_ratio 1 --load_size 256 --crop_size 256 --batchSize 16 --gpu_ids 0

You can change netG to different options [spade, asapnets, pix2pixhd].

Training with original discriminator

The original model can be trained with the following command for comparison.

python train.py --name spade_orig --dataset_mode cityscapes --netG spade \
--checkpoints_dir <checkpoints path> --dataroot <data path> \
--niter_decay 100 --niter 100 --aspect_ratio 1 --load_size 256 --crop_size 256 --batchSize 16 --gpu_ids 0

Similarly, you can change netG to different options [spade, asapnets, pix2pixhd].

For now, only training on GPU is supported. In case of lack of space, try decreasing the batch size.

Test

Tests - image synthesis

After you have the trained networks, run the test as follows to get the synthesized images for both original and semdisc models

python test.py --name $name --dataset_mode cityscapes \
--checkpoints_dir <checkpoints path> --dataroot <data path> --results_dir ./results/ \
--which_epoch latest --aspect_ratio 1 --load_size 256 --crop_size 256 \
--netG spade --how_many 496

Tests - FID

For reporting FID scores, we leveraged fid-pytorch. To compute the score between two sets:

python fid/pytorch-fid/fid_score.py <GT_image path> <synthesized_image path> >> results/fid_$name.txt

Tests - segmentation

For reporting the segmentation scores, we used DRN. The pre-trained model (and some other details) can be found on this page. Follow the instructions on the DRN github page to setup Cityscapes.

You should have a main folder containing the drn/ folder (from github), the model .pth, the info.json, the val_images.txt and val_labels.txt, a 'labels' folder with the *_trainIds.png images, and a 'synthesized_image' folder with your *_leftImg8bit.png images.

The info.json is from the github, the val_images.txt and val_labels.txt can be obtained with the commands:

find labels/ -maxdepth 3 -name "*_trainIds.png" | sort > val_labels.txt
find synthesized_image/ -maxdepth 3 -name "*_leftImg8bit.png" | sort > val_images.txt

You also need to resize the label images to that size. You can do it with the convert command:

convert -sample 512X256\! "<Cityscapes val>/frankfurt/*_trainIds.png" -set filename:base "%[base]" "<path>/labels/%[filename:base].png"
convert -sample 512X256\! "<Cityscapes val>/lindau/*_trainIds.png" -set filename:base "%[base]" "<path>/labels/%[filename:base].png"
convert -sample 512X256\! "<Cityscapes val>/munster/*_trainIds.png" -set filename:base "%[base]" "<path>/labels/%[filename:base].png"

and the output of the models:

convert -sample 512X256\! "<Cityscapes test results path>/test_latest/images/synthesized_image/*.png" -set filename:base "%[base]" "synthesized_image/%[filename:base].png"

Then I run the model with:

cd drn/
python3 segment.py test -d ../ -c 19 --arch drn_d_105 --pretrained ../drn-d-105_ms_cityscapes.pth --phase val --batch-size 1 --ms >> ./results/seg_$name.txt

Acknowledgments

The base of the code is borrowed from SPADE. Please refer to SPADE to see the details.

Citation

@article{saadatnejad2021semdisc,
  author={Saadatnejad, Saeed and Li, Siyuan and Mordan, Taylor and Alahi, Alexandre},
  journal={IEEE Transactions on Intelligent Transportation Systems}, 
  title={A Shared Representation for Photorealistic Driving Simulators}, 
  year={2021},
  doi={10.1109/TITS.2021.3131303}
}
Owner
VITA lab at EPFL
Visual Intelligence for Transportation
VITA lab at EPFL
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX

ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone

Ibai Gorordo 23 Nov 29, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
Si Adek Keras is software VR dangerous object detection.

Si Adek Python Keras Sistem Informasi Deteksi Benda Berbahaya Keras Python. Version 1.0 Developed by Ananda Rauf Maududi. Developed date: 24 November

Ananda Rauf 1 Dec 21, 2021
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
Command-line tool for downloading and extending the RedCaps dataset.

RedCaps Downloader This repository provides the official command-line tool for downloading and extending the RedCaps dataset. Users can seamlessly dow

RedCaps dataset 33 Dec 14, 2022
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022