Spatial Contrastive Learning for Few-Shot Classification (SCL)

Overview

Spatial Contrastive Learning for Few-Shot Classification (SCL)

Paper 📃

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image classification in order to learn more general purpose embeddings, and facilitate the test-time adaptation to novel visual categories.

Highlights 🔥

(1) Contrastive Learning for Few-Shot Classification.
We explore contrastive learning as an auxiliary pre-training objective to learn more transferable features and facilitate the test time adaptation for few-shot classification.

(2) Spatial Contrastive Learning (SCL).
We propose a novel Spatial Contrastive (SC) loss that promotes the encoding of the relevant spatial information into the learned representations, and further promotes class-independent discriminative patterns.

(3) Contrastive Distillation for Few-Shot Classification.
We introduce a novel contrastive distillation objective to reduce the compactness of the features in the embedding space and provide additional refinement of the representations.

Requirements 🔧

This repo was tested with CentOS 7.7.1908, Python 3.7.7, PyTorch 1.6.0, and CUDA 10.2. However, we expect that the provided code is compatible with older and newer version alike.

The required packages are pytorch and torchvision, together with PIL and sckitlearn for data-preprocessing and evaluation, tqdm for showing the training progress, and some additional modules. To setup the necessary modules, simply run:

pip install -r requirements.txt

Datasets 💽

Standard Few-shot Setting

For the standard few-shot experiments, we used ImageNet derivatives: miniImagetNet and tieredImageNet, in addition to CIFAR-100 derivatives: FC100 and CIFAR-FS. These datasets are preprocessed by the repo of MetaOptNet, renamed and re-uploaded by RFS and can be downloaded from here: [DropBox]

After downloading all of the dataset, and placing them in the same folder which we refer to as DATA_PATH, where each dataset has its specific folder, eg: DATA_PATH/FC100. Then, during training, we can set the training argument data_root to DATA_PATH.

Cross-domain Few-shot Setting

In cross-domain setting, we train on miniImageNet but we test on a different dataset. Specifically, we consider 4 datasets: cub, cars, places and plantae. All of the datasets can be downloaded as follows:

cd dataset/download
python download.py DATASET_NAME DATA_PATH

where DATASET_NAME refers to one of the 4 datasets (cub, cars, places and plantae) and DATA_PATH refers to the path where the data will be downloaded and saved, which can be the path as the standard datasets above.

Running

All of the commands necessary to reproduce the results of the paper can be found in scripts/run.sh.

In general, to use the proposed method for few-shot classification, there is a two stage approach to follows: (1) training the model on the merged meta-training set using train_contrastive.py, then (2) an evaluation setting, where we evaluate the pre-trained embedding model on the meta-testing stage using eval_fewshot.py. Note that we can also apply an optional distillation step after the first pre-training step using train_distillation.py.

Other Use Cases

The proposed SCL method is not specific to few-shot classification, and can also be used for standard supervised or self-supervised training for image classification. For instance, this can be done as follows:

from losses import ContrastiveLoss
from models.attention import AttentionSimilarity

attention_module = AttentionSimilarity(hidden_size=128) # hidden_size depends on the encoder
contrast_criterion = ContrastiveLoss(temperature=10) # inverse temp is used (0.1)

....

# apply some augmentations
aug_inputs1, aug_inputs2 = augment(inputs) 
aug_inputs = torch.cat([aug_inputs1, aug_inputs2], dim=0)

# forward pass
features = encoder(aug_inputs)

# supervised case
loss_contrast = contrast_criterion(features, attention=attention_module, labels=labels)

# unsupervised case
loss_contrast = contrast_criterion(features, attention=attention_module, labels=None)

....

Citation 📝

If you find this repo useful for your research, please consider citing the paper as follows:

@article{ouali2020spatial,
  title={Spatial Contrastive Learning for Few-Shot Classification},
  author={Ouali, Yassine and Hudelot, C{\'e}line and Tami, Myriam},
  journal={arXiv preprint arXiv:2012.13831},
  year={2020}
}

For any questions, please contact Yassine Ouali.

Acknowlegements

  • The code structure is based on RFS repo.
  • The cross-domain datasets code is based on CrossDomainFewShot repo.
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

52 Dec 23, 2022
Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)

spatial-intention-maps This code release accompanies the following paper: Spatial Intention Maps for Multi-Agent Mobile Manipulation Jimmy Wu, Xingyua

Jimmy Wu 70 Jan 02, 2023
A Python 3 package for state-of-the-art statistical dimension reduction methods

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques This package delivers a scikit-learn compatible Python 3

Sven Serneels 32 Dec 14, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.

Ruo-Ze Liu 216 Jan 04, 2023
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022
A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for rein

Mohammad Amin Haghpanah 184 Dec 31, 2022
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
Unrolled Generative Adversarial Networks

Unrolled Generative Adversarial Networks Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein arxiv:1611.02163 This repo contains an example notebo

Ben Poole 292 Dec 06, 2022
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022
A Survey on Deep Learning Technique for Video Segmentation

A Survey on Deep Learning Technique for Video Segmentation A Survey on Deep Learning Technique for Video Segmentation Wenguan Wang, Tianfei Zhou, Fati

Tianfei Zhou 112 Dec 12, 2022