Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

Related tags

Deep LearningUTNet
Overview

UTNet (Accepted at MICCAI 2021)

Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

Introduction

Transformer architecture has emerged to be successful in a number of natural language processing tasks. However, its applications to medical vision remain largely unexplored. In this study, we present UTNet, a simple yet powerful hybrid Transformer architecture that integrates self-attention into a convolutional neural network for enhancing medical image segmentation. UTNet applies self-attention modules in both encoder and decoder for capturing long-range dependency at dif- ferent scales with minimal overhead. To this end, we propose an efficient self-attention mechanism along with relative position encoding that reduces the complexity of self-attention operation significantly from O(n2) to approximate O(n). A new self-attention decoder is also proposed to recover fine-grained details from the skipped connections in the encoder. Our approach addresses the dilemma that Transformer requires huge amounts of data to learn vision inductive bias. Our hybrid layer design allows the initialization of Transformer into convolutional networks without a need of pre-training. We have evaluated UTNet on the multi- label, multi-vendor cardiac magnetic resonance imaging cohort. UTNet demonstrates superior segmentation performance and robustness against the state-of-the-art approaches, holding the promise to generalize well on other medical image segmentations.

image image

Supportting models

UTNet

TransUNet

ResNet50-UTNet

ResNet50-UNet

SwinUNet

To be continue ...

Getting Started

Currently, we only support M&Ms dataset.

Prerequisites

Python >= 3.6
pytorch = 1.8.1
SimpleITK = 2.0.2
numpy = 1.19.5
einops = 0.3.2

Preprocess

Resample all data to spacing of 1.2x1.2 mm in x-y plane. We don't change the spacing of z-axis, as UTNet is a 2D network. Then put all data into 'dataset/'

Training

The M&M dataset provides data from 4 venders, where vendor AB are provided for training while ABCD for testing. The '--domain' is used to control using which vendor for training. '--domain A' for using vender A only. '--domain B' for using vender B only. '--domain AB' for using both vender A and B. For testing, all 4 venders will be used.

UTNet

For default UTNet setting, training with:

python train_deep.py -m UTNet -u EXP_NAME --data_path YOUR_OWN_PATH --reduce_size 8 --block_list 1234 --num_blocks 1,1,1,1 --domain AB --gpu 0 --aux_loss

Or you can use '-m UTNet_encoder' to use transformer blocks in the encoder only. This setting is more stable than the default setting in some cases.

To optimize UTNet in your own task, there are several hyperparameters to tune:

'--block_list': indicates apply transformer blocks in which resolution. The number means the number of downsamplings, e.g. 3,4 means apply transformer blocks in features after 3 and 4 times downsampling. Apply transformer blocks in higher resolution feature maps will introduce much more computation.

'--num_blocks': indicates the number of transformer blocks applied in each level. e.g. block_list='3,4', num_blocks=2,4 means apply 2 transformer blocks in 3-times downsampling level and apply 4 transformer blocks in 4-time downsampling level.

'--reduce_size': indicates the size of downsampling for efficient attention. In our experiments, reduce_size 8 and 16 don't have much difference, but 16 will introduce more computation, so we choost 8 as our default setting. 16 might have better performance in other applications.

'--aux_loss': applies deep supervision in training, will introduce some computation overhead but has slightly better performance.

Here are some recomended parameter setting:

--block_list 1234 --num_blocks 1,1,1,1

Our default setting, most efficient setting. Suitable for tasks with limited training data, and most errors occur in the boundary of ROI where high resolution information is important.

--block_list 1234 --num_blocks 1,1,4,8

Similar to the previous one. The model capacity is larger as more transformer blocks are including, but needs larger dataset for training.

--block_list 234 --num_blocks 2,4,8

Suitable for tasks that has complex contexts and errors occurs inside ROI. More transformer blocks can help learn higher-level relationship.

Feel free to try other combinations of the hyperparameter like base_chan, reduce_size and num_blocks in each level etc. to trade off between capacity and efficiency to fit your own tasks and datasets.

TransUNet

We borrow code from the original TransUNet repo and fit it into our training framework. If you want to use pre-trained weight, please download from the original repo. The configuration is not parsed by command line, so if you want change the configuration of TransUNet, you need change it inside the train_deep.py.

python train_deep.py -m TransUNet -u EXP_NAME --data_path YOUR_OWN_PATH --gpu 0

ResNet50-UTNet

For fair comparison with TransUNet, we implement the efficient attention proposed in UTNet into ResNet50 backbone, which is basically append transformer blocks into specified level after ResNet blocks. ResNet50-UTNet is slightly better in performance than the default UTNet in M&M dataset.

python train_deep.py -m ResNet_UTNet -u EXP_NAME --data_path YOUR_OWN_PATH --reduce_size 8 --block_list 123 --num_blocks 1,1,1 --gpu 0

Similar to UTNet, this is the most efficient setting, suitable for tasks with limited training data.

--block_list 23 --num_blocks 2,4

Suitable for tasks that has complex contexts and errors occurs inside ROI. More transformer blocks can help learn higher-level relationship.

ResNet50-UNet

If you don't use Transformer blocks in ResNet50-UTNet, it is actually ResNet50-UNet. So you can use this as the baseline to compare the performance improvement from Transformer for fair comparision with TransUNet and our UTNet.

python train_deep.py -m ResNet_UTNet -u EXP_NAME --data_path YOUR_OWN_PATH --block_list ''  --gpu 0

SwinUNet

Download pre-trained model from the origin repo. As Swin-Transformer's input size is related to window size and is hard to change after pretraining, so we adapt our input size to 224. Without pre-training, SwinUNet's performance is very low.

python train_deep.py -m SwinUNet -u EXP_NAME --data_path YOUR_OWN_PATH --crop_size 224

Citation

If you find this repo helps, please kindly cite our paper, thanks!

@inproceedings{gao2021utnet,
  title={UTNet: a hybrid transformer architecture for medical image segmentation},
  author={Gao, Yunhe and Zhou, Mu and Metaxas, Dimitris N},
  booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
  pages={61--71},
  year={2021},
  organization={Springer}
}
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
ParmeSan: Sanitizer-guided Greybox Fuzzing

ParmeSan: Sanitizer-guided Greybox Fuzzing ParmeSan is a sanitizer-guided greybox fuzzer based on Angora. Published Work USENIX Security 2020: ParmeSa

VUSec 158 Dec 31, 2022
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022