Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

Overview

RfD-Net [Project Page] [Paper] [Video]

RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction
Yinyu Nie, Ji Hou, Xiaoguang Han, Matthias Nießner
In CVPR, 2021.

points.png pred.png

From an incomplete point cloud of a 3D scene (left), our method learns to jointly understand the 3D objects and reconstruct instance meshes as the output (right).


Install

  1. This implementation uses Python 3.6, Pytorch1.7.1, cudatoolkit 11.0. We recommend to use conda to deploy the environment.

    • Install with conda:
    conda env create -f environment.yml
    conda activate rfdnet
    
    • Install with pip:
    pip install -r requirements.txt
    
  2. Next, compile the external libraries by

    python setup.py build_ext --inplace
    
  3. Install PointNet++ by

    cd external/pointnet2_ops_lib
    pip install .
    

Demo

The pretrained model can be downloaded here. Put the pretrained model in the directory as below

out/pretrained_models/pretrained_weight.pth

A demo is illustrated below to see how our method works.

cd RfDNet
python main.py --config configs/config_files/ISCNet_test.yaml --mode demo --demo_path demo/inputs/scene0549_00.off

VTK is used here to visualize the 3D scenes. The outputs will be saved under 'demo/outputs'. You can also play with your toy with this script.

If everything goes smooth, there will be a GUI window popped up and you can interact with the scene as below. screenshot_demo.png

If you run it on machines without X display server, you can use the offscreen mode by setting offline=True in demo.py. The rendered image will be saved in demo/outputs/some_scene_id/pred.png.


Prepare Data

In our paper, we use the input point cloud from the ScanNet dataset, and the annotated instance CAD models from the Scan2CAD dataset. Scan2CAD aligns the object CAD models from ShapeNetCore.v2 to each object in ScanNet, and we use these aligned CAD models as the ground-truth.

Preprocess ScanNet and Scan2CAD data

You can either directly download the processed samples [link] to the directory below (recommended)

datasets/scannet/processed_data/

or

  1. Ask for the ScanNet dataset and download it to
    datasets/scannet/scans
    
  2. Ask for the Scan2CAD dataset and download it to
    datasets/scannet/scan2cad_download_link
    
  3. Preprocess the ScanNet and Scan2CAD dataset for training by
    cd RfDNet
    python utils/scannet/gen_scannet_w_orientation.py
    
Preprocess ShapeNet data

You can either directly download the processed data [link] and extract them to datasets/ShapeNetv2_data/ as below

datasets/ShapeNetv2_data/point
datasets/ShapeNetv2_data/pointcloud
datasets/ShapeNetv2_data/voxel
datasets/ShapeNetv2_data/watertight_scaled_simplified

or

  1. Download ShapeNetCore.v2 to the path below

    datasets/ShapeNetCore.v2
    
  2. Process ShapeNet models into watertight meshes by

    python utils/shapenet/1_fuse_shapenetv2.py
    
  3. Sample points on ShapeNet models for training (similar to Occupancy Networks).

    python utils/shapenet/2_sample_mesh.py --resize --packbits --float16
    
  4. There are usually 100K+ points per object mesh. We simplify them to speed up our testing and visualization by

    python utils/shapenet/3_simplify_fusion.py --in_dir datasets/ShapeNetv2_data/watertight_scaled --out_dir datasets/ShapeNetv2_data/watertight_scaled_simplified
    
Verify preprocessed data

After preprocessed the data, you can run the visualization script below to check if they are generated correctly.

  • Visualize ScanNet+Scan2CAD+ShapeNet samples by

    python utils/scannet/visualization/vis_gt.py
    

    A VTK window will be popped up like below.

    verify.png

Training, Generating and Evaluation

We use the configuration file (see 'configs/config_files/****.yaml') to fully control the training/testing/generating process. You can check a template at configs/config_files/ISCNet.yaml.

Training

We firstly pretrain our detection module and completion module followed by a joint refining. You can follow the process below.

  1. Pretrain the detection module by

    python main.py --config configs/config_files/ISCNet_detection.yaml --mode train
    

    It will save the detection module weight at out/iscnet/a_folder_with_detection_module/model_best.pth

  2. Copy the weight path of detection module (see 1.) into configs/config_files/ISCNet_completion.yaml as

    weight: ['out/iscnet/a_folder_with_detection_module/model_best.pth']
    

    Then pretrain the completion module by

    python main.py --config configs/config_files/ISCNet_completion.yaml --mode train
    

    It will save the completion module weight at out/iscnet/a_folder_with_completion_module/model_best.pth

  3. Copy the weight path of completion module (see 2.) into configs/config_files/ISCNet.yaml as

    weight: ['out/iscnet/a_folder_with_completion_module/model_best.pth']
    

    Then jointly finetune RfD-Net by

    python main.py --config configs/config_files/ISCNet.yaml --mode train
    

    It will save the trained model weight at out/iscnet/a_folder_with_RfD-Net/model_best.pth

Generating

Copy the weight path of RfD-Net (see 3. above) into configs/config_files/ISCNet_test.yaml as

weight: ['out/iscnet/a_folder_with_RfD-Net/model_best.pth']

Run below to output all scenes in the test set.

python main.py --config configs/config_files/ISCNet_test.yaml --mode test

The 3D scenes for visualization are saved in the folder of out/iscnet/a_folder_with_generated_scenes/visualization. You can visualize a triplet of (input, pred, gt) following a demo below

python utils/scannet/visualization/vis_for_comparison.py 

If everything goes smooth, there will be three windows (corresponding to input, pred, gt) popped up by sequence as

Input Prediction Ground-truth

Evaluation

You can choose each of the following ways for evaluation.

  1. You can export all scenes above to calculate the evaluation metrics with any external library (for researchers who would like to unify the benchmark). Lower the dump_threshold in ISCNet_test.yaml in generation to enable more object proposals for mAP calculation (e.g. dump_threshold=0.05).

  2. In our evaluation, we voxelize the 3D scenes to keep consistent resolution with the baseline methods. To enable this,

    1. make sure the executable binvox are downloaded and configured as an experiment variable (e.g. export its path in ~/.bashrc for Ubuntu). It will be deployed by Trimesh.

    2. Change the ISCNet_test.yaml as below for evaluation.

       test:
         evaluate_mesh_mAP: True
       generation:
         dump_results: False
    

    Run below to report the evaluation results.

    python main.py --config configs/config_files/ISCNet_test.yaml --mode test
    

    The log file will saved in out/iscnet/a_folder_named_with_script_time/log.txt


Differences to the paper

  1. The original paper was implemented with Pytorch 1.1.0, and we reconfigure our code to fit with Pytorch 1.7.1.
  2. A post processing step to align the reconstructed shapes to the input scan is supported. We have verified that it can improve the evaluation performance by a small margin. You can switch on/off it following demo.py.
  3. A different learning rate scheduler is adopted. The learning rate decreases to 0.1x if there is no gain within 20 steps, which is much more efficient.

Citation

If you find our work helpful, please consider citing

@inproceedings{Nie_2021_CVPR,
    title={RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction},
    author={Nie, Yinyu and Hou, Ji and Han, Xiaoguang and Nie{\ss}ner, Matthias},
    booktitle={Proc. Computer Vision and Pattern Recognition (CVPR), IEEE},
    year={2021}
}


License

RfD-Net is relased under the MIT License. See the LICENSE file for more details.

Owner
Yinyu Nie
currently a Ph.D. student at NCCA, Bournemouth University.
Yinyu Nie
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
HomeAssitant custom integration for dyson

HomeAssistant Custom Integration for Dyson This custom integration is still under development. This is a HA custom integration for dyson. There are se

Xiaonan Shen 232 Dec 31, 2022
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
Deep learning for spiking neural networks

A deep learning library for spiking neural networks. Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and even

Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware 59 Nov 28, 2022
TensorFlow implementation of ENet, trained on the Cityscapes dataset.

segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e

Fredrik Gustafsson 248 Dec 16, 2022
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

QiulinW 122 Dec 23, 2022
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022