This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

Overview

DCL-PyTorch

Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page.

Framework

Grounding Physical Concepts of Objects and Events Through Dynamic Visual Reasoning
Zhenfang Chen, Jiayuan Mao, Jiajun Wu, Kwan-Yee K. Wong, Joshua B. Tenenbaum, and Chuang Gan

Prerequisites

  • Python 3
  • PyTorch 1.0 or higher, with NVIDIA CUDA Support
  • Other required python packages specified by requirements.txt. See the Installation.

Installation

Install Jacinle: Clone the package, and add the bin path to your global PATH environment variable:

git clone https://github.com/vacancy/Jacinle --recursive
export PATH=<path_to_jacinle>/bin:$PATH

Clone this repository:

git clone https://github.com/zfchenUnique/DCL-Release.git --recursive

Create a conda environment for NS-CL, and install the requirements. This includes the required python packages from both Jacinle NS-CL. Most of the required packages have been included in the built-in anaconda package:

Dataset preparation

  • Download videos, video annotation, questions and answers, and object proposals accordingly from the official website
  • Transform videos into ".png" frames with ffmpeg.
  • Organize the data as shown below.
    clevrer
    ├── annotation_00000-01000
    │   ├── annotation_00000.json
    │   ├── annotation_00001.json
    │   └── ...
    ├── ...
    ├── image_00000-01000
    │   │   ├── 1.png
    │   │   ├── 2.png
    │   │   └── ...
    │   └── ...
    ├── ...
    ├── questions
    │   ├── train.json
    │   ├── validation.json
    │   └── test.json
    ├── proposals
    │   ├── proposal_00000.json
    │   ├── proposal_00001.json
    │   └── ...
    

Fast Evaluation

    git clone https://github.com/zfchenUnique/clevrer_dynamic_propnet.git
    cd clevrer_dynamic_propnet
    sh ./scripts/eval_fast_release_v2.sh 0
   sh scripts/script_test_prp_clevrer_qa.sh 0

Step-by-step Training

  • Step 1: download the proposals from the region proposal network and extract object trajectories for train and val set by
   sh scripts/script_gen_tubes.sh
  • Step 2: train a concept learner with descriptive and explanatory questions for static concepts (i.e. color, shape and material)
   sh scripts/script_train_dcl_stage1.sh 0
  • Step 3: extract static attributes & refine object trajectories extract static attributes
   sh scripts/script_extract_attribute.sh

refine object trajectories

   sh scripts/script_gen_tubes_refine.sh
  • Step 4: extract predictive and counterfactual scenes by
    cd clevrer_dynamic_propnet
    sh ./scripts/train_tube_box_only.sh # train
    sh ./scripts/train_tube.sh # train
    sh ./scripts/eval_fast_release_v2.sh 0 # val
  • Step 5: train DCL with all questions and the refined trajectories
   sh scripts/script_train_dcl_stage2.sh 0

Generalization to CLEVRER-Grounding

    sh ./scripts/script_grounding.sh  0
    jac-crun 0 scripts/script_evaluate_grounding.py

Generalization to CLEVRER-Retrieval

    sh ./scripts/script_retrieval.sh  0
    jac-crun 0 scripts/script_evaluate_retrieval.py

Extension to Tower Blocks

    sh ./scripts/script_train_blocks.sh 0
  • Step 3: download the pretrain model from google drive and evaluate on Tower block QA
    sh ./scripts/script_eval_blocks.sh 0

Others

Citation

If you find this repo useful in your research, please consider citing:

@inproceedings{zfchen2021iclr,
    title={Grounding Physical Concepts of Objects and Events Through Dynamic Visual Reasoning},
    author={Chen, Zhenfang and Mao, Jiayuan and Wu, Jiajun and Wong, Kwan-Yee K and Tenenbaum, Joshua B. and Gan, Chuang},
    booktitle={International Conference on Learning Representations},
    year={2021}
    }
Owner
Zhenfang Chen
Keep it simple.
Zhenfang Chen
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes, ICCV 2017

AdaptationSeg This is the Python reference implementation of AdaptionSeg proposed in "Curriculum Domain Adaptation for Semantic Segmentation of Urban

Yang Zhang 128 Oct 19, 2022
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Vaibhav Rajput 2 Jun 21, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
official code for dynamic convolution decomposition

Revisiting Dynamic Convolution via Matrix Decomposition (ICLR 2021) A pytorch implementation of DCD. If you use this code in your research please cons

Yunsheng Li 110 Nov 23, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Yuanyuan Yuan 172 Dec 29, 2022
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022