Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Related tags

Deep LearningRealVSR
Overview

Dataset and Code for RealVSR

Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme
Xi Yang, Wangmeng Xiang, Hui Zeng and Lei Zhang
International Conference on Computer Vision, 2021.

Dataset

The dataset is hosted on Google Drive and Baidu Drive (code: 43ph). Some example scenes are shown below.

dataset_samples

The structure of the dataset is illustrated below.

File Description
GT.zip All ground truth sequences in RGB format
LQ.zip All low quality sequences in RGB format
GT_YCbCr.zip All ground truth sequences in YCbCr format
LQ_YCbCr.zip All low quality sequences in YCbCr format
GT_test.zip Ground truth test sequences in RGB format
LQ_test.zip Low Quality test sequences in RGB format
GT_YCbCr_test.zip Ground truth test sequences in YCbCr format
LQ_YCbCr_test.zip Low Quality test sequences in YCbCr format

Code

Dependencies

  • Linux (tested on Ubuntu 18.04)
  • Python 3 (tested on python 3.7)
  • NVIDIA GPU + CUDA (tested on CUDA 10.2 and 11.1)

Installation

# Create a new anaconda python environment (realvsr)
conda create -n realvsr python=3.7 -y

# Activate the created environment
conda activate realvsr

# Install dependencies
pip install -r requirements.txt

# Bulid the DCN module
cd codes/models/archs/dcn
python setup.py develop

Training

Modify the configuration files accordingly in codes/options/train folder and run the following command (current we did not implement distributed training):

python train.py -opt xxxxx.yml

Testing

Test on RealVSR testing set sequences:

Modify the configuration in test_RealVSR_wi_GT.py and run the following command:

python test_RealVSR_wi_GT.py

Test on real-world captured sequences:

Modify the configuration in test_RealVSR_wo_GT.py and run the following command:

python test_RealVSR_wo_GT.py

Pre-trained Models

Some pretrained models could be found on Google Drive and Baidu Drive (code: n1n0).

License

This project is released under the Apache 2.0 license.

Citation

If you find this code useful in your research, please consider citing:

@article{yang2021real,
  title={Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme},
  author={YANG, Xi and Xiang, Wangmeng and Zeng, Hui and Zhang, Lei},
  journal=ICCV,
  year={2021}
}

Acknowledgement

This implementation largely depends on EDVR. Thanks for the excellent codebase! You may also consider migrating it to BasicSR.

Owner
Xi Yang
PhD Candidate @ PolyU, working on low-level computer vision
Xi Yang
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
A privacy-focused, intelligent security camera system.

Self-Hosted Home Security Camera System A privacy-focused, intelligent security camera system. Features: Multi-camera support w/ minimal configuration

Scott Barnes 175 Jan 01, 2023
some classic model used to segment the medical images like CT、X-ray and so on

github_project This is a project for medical image segmentation. This project includes common medical image segmentation models such as U-net, FCN, De

2 Mar 30, 2022
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation".

PixelTransformer Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation". Project Page Installation Please insta

Shubham Tulsiani 24 Dec 17, 2022
This repo is about implementing different approaches of pose estimation and also is a sub-task of the smart hospital bed project :smile:

Pose-Estimation This repo is a sub-task of the smart hospital bed project which is about implementing the task of pose estimation 😄 Many thanks to th

Max 11 Oct 17, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
Subpopulation detection in high-dimensional single-cell data

PhenoGraph for Python3 PhenoGraph is a clustering method designed for high-dimensional single-cell data. It works by creating a graph ("network") repr

Dana Pe'er Lab 42 Sep 05, 2022
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
Keras Image Embeddings using Contrastive Loss

Image to Embedding projection in vector space. Implementation in keras and tensorflow of batch all triplet loss for one-shot/few-shot learning.

Shravan Anand K 5 Mar 21, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
YOLOPのPythonでのONNX推論サンプル

YOLOP-ONNX-Video-Inference-Sample YOLOPのPythonでのONNX推論サンプルです。 ONNXモデルは、hustvl/YOLOP/weights を使用しています。 Requirement OpenCV 3.4.2 or later onnxruntime 1.

KazuhitoTakahashi 8 Sep 05, 2022
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.

Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap

867 Jan 02, 2023
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022