Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Overview

Expressive Power of Invariant and Equivaraint Graph Neural Networks

In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alignment problem. This code was used to derive the practical results in the following paper:

Waiss Azizian, Marc Lelarge. Expressive Power of Invariant and Equivariant Graph Neural Networks, ICLR 2021.

arXiv OpenReview

Problem: alignment of graphs

The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic. Here we consider a noisy version of this problem: the two graphs below are noisy versions of a parent graph. There is no strict isomorphism between them. Can we still match the vertices of graph 1 with the corresponding vertices of graph 2?

graph 1 graph 2

With our GNN, we obtain the following results: green vertices are well paired vertices and red vertices are errors. Both graphs are now represented using the layout from the right above but the color of the vertices are the same on both sides. At inference, our GNN builds node embedding for the vertices of graphs 1 and 2. Finally a node of graph 1 is matched to its most similar node of graph 2 in this embedding space.

graph 1 graph 2

Below, on the left, we plot the errors made by our GNN: errors made on red vertices are represented by links corresponding to a wrong matching or cycle; on the right, we superpose the two graphs: green edges are in both graphs (they correspond to the parent graph), orange edges are in graph 1 only and blue edges are in graph 2 only. We clearly see the impact of the noisy edges (orange and blue) as each red vertex (corresponding to an error) is connected to such edges (except the isolated red vertex).

Wrong matchings/cycles Superposing the 2 graphs

To measure the performance of our GNN, instead of looking at vertices, we can look at edges. On the left below, we see that our GNN recovers most of the green edges present in graphs 1 and 2 (edges from the parent graph). On the right, mismatched edges correspond mostly to noisy (orange and blue) edges (present in only one of the graphs 1 or 2).

Matched edges Mismatched edges

Training GNN for the graph alignment problem

For the training of our GNN, we generate synthetic datasets as follows: first sample the parent graph and then add edges to construct graphs 1 and 2. We obtain a dataset made of pairs of graphs for which we know the true matching of vertices. We then use a siamese encoder as shown below where the same GNN (i.e. shared weights) is used for both graphs. The node embeddings constructed for each graph are then used to predict the corresponding permutation index by taking the outer product and a softmax along each row. The GNN is trained with a standard cross-entropy loss. At inference, we can add a LAP solver to get a permutation from the matrix .

Various architectures can be used for the GNN and we find that FGNN (first introduced by Maron et al. in Provably Powerful Graph Networks NeurIPS 2019) are best performing for our task. In our paper Expressive Power of Invariant and Equivariant Graph Neural Networks, we substantiate these empirical findings by proving that FGNN has a better power of approximation among all equivariant architectures working with tensors of order 2 presented so far (this includes message passing GNN or linear GNN).

Results

Each line corresponds to a model trained at a given noise level and shows its accuracy across all noise levels. We see that pretrained models generalize very well at noise levels unseen during the training.

We provide a simple notebook to reproduce this result for the pretrained model released with this repository (to run the notebook create a ipykernel with name gnn and with the required dependencies as described below).

We refer to our paper for comparisons with other algorithms (message passing GNN, spectral or SDP algorithms).

To cite our paper:

@inproceedings{azizian2020characterizing,
  title={Expressive power of invariant and equivariant graph neural networks},
  author={Azizian, Wa{\"\i}ss and Lelarge, Marc},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=lxHgXYN4bwl}
}

Overview of the code

Project structure

.
├── loaders
|   └── dataset selector
|   └── data_generator.py # generating random graphs
|   └── test_data_generator.py
|   └── siamese_loader.py # loading pairs 
├── models
|   └── architecture selector
|   └── layers.py # equivariant block
|   └── base_model.py # powerful GNN Graph -> Graph
|   └── siamese_net.py # GNN to match graphs
├── toolbox
|   └── optimizer and losses selectors
|   └── logger.py  # keeping track of most results during training
|   └── metrics.py # computing scores
|   └── losses.py  # computing losses
|   └── optimizer.py # optimizers
|   └── utility.py
|   └── maskedtensor.py # Tensor-like class to handle batches of graphs of different sizes
├── commander.py # main file from the project serving for calling all necessary functions for training and testing
├── trainer.py # pipelines for training and validation
├── eval.py # testing models

Dependencies

Dependencies are listed in requirements.txt. To install, run

pip install -r requirements.txt

Training

Run the main file commander.py with the command train

python train commander.py

To change options, use Sacred command-line interface and see default.yaml for the configuration structure. For instance,

python commander.py train with cpu=No data.generative_model=Regular train.epoch=10 

You can also copy default.yaml and modify the configuration parameters there. Loading the configuration in other.yaml (or other.json) can be done with

python commander.py train with other.yaml

See Sacred documentation for an exhaustive reference.

To save logs to Neptune, you need to provide your own API key via the dedicated environment variable.

The model is regularly saved in the folder runs.

Evaluating

There are two ways of evaluating the models. If you juste ran the training with a configuration conf.yaml, you can simply do,

python commander.py eval with conf.yaml

You can omit with conf.yaml if you are using the default configuartion.

If you downloaded a model with a config file from here, you can edit the section test_data of this config if you wish and then run,

python commander.py eval with /path/to/config model_path=/path/to/model.pth.tar
Comments
  • need 2 different model_path variables

    need 2 different model_path variables

    When not starting anew, model_path_load should contain the path to the model. model_path should then be the path to save the new learned model. Right now, the model_path_load is used for the evaluation!

    bug 
    opened by mlelarge 1
  • Unify the different problems

    Unify the different problems

    The previous commands for training and evaluation should still work the same, even though it uses a different configuration file at the beginning. It still uses Sacred the same way for the commander.py. The problem can be switched from the config file. The main change in the previous code is the use of the Helper class (in toolbox/helper.py) which is the class that coordinates each problem (see the file for further info).

    Also added the 'article_commander.py' which generates the data for comparison between planted problems and the corresponding NP-problem, which works in a similar way to commander.py.

    opened by MauTrib 1
  • Reorganize a commander.py

    Reorganize a commander.py

    This PR tries to unify the train and eval CLI wth the use of a single config file. See default.yaml for the result and the README for more information. Please, don't hesitate to comment on changes you don't approve or dislike. Bests,

    opened by wazizian 1
  • Fix convention for tensor shapes

    Fix convention for tensor shapes

    Hi! I am modifying the code so the same convention for the shape of tensors is used everywhere (see PR). But I'm not sure we have chosen the right one. You and we have chosen(bs, n_vertices, n_vertices, features)but Marron preferred (bs, features, n_vertices, n_vertices). Indeed the later matches Pytorch's convention for images and so makes convolutions natural. In one case, MLPs and blocks have to be adapted and in the other, it is the data generation process, so it is a similar amount of work. What do you think ? Bests, Waïss

    opened by wazizian 1
  • added normalization + embeddings

    added normalization + embeddings

    I modified slightly the architecture and training seems much better and more stable. I added a first embedding layer and BN after multiplication and at the output.

    opened by mlelarge 0
Releases(QAP)
  • QAP(Jan 21, 2021)

    Config: "data": {"num_examples_train": 20000, "num_examples_val": 1000, "generative_model": "Regular", "noise_model": "ErdosRenyi", "edge_density": 0.2, "n_vertices": 50, "vertex_proba": 1.0, "noise": 0.15, "path_dataset": "dataset"}, "train": {"epoch": 50, "batch_size": 32, "lr": 0.0001, "scheduler_step": 5, "scheduler_decay": 0.9, "print_freq": 100, "loss_reduction": "mean"}, "arch": {"arch": "Siamese_Model", "model_name": "Simple_Node_Embedding", "num_blocks": 2, "original_features_num": 2, "in_features": 64, "out_features": 64, "depth_of_mlp": 3}

    Source code(tar.gz)
    Source code(zip)
    config.json(601 bytes)
    model_best.pth.tar(333.26 KB)
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
Time Dependent DFT in Tamm-Dancoff Approximation

Density Function Theory Program - kspy-tddft(tda) This is an implementation of Time-Dependent Density Functional Theory(TDDFT) using the Tamm-Dancoff

Peter Borthwick 2 Nov 17, 2022
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023
Kindle is an easy model build package for PyTorch.

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? wh

Jongkuk Lim 77 Nov 11, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 05, 2023
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022