Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Related tags

Deep LearningIB-Loss
Overview

Influence-balanced Loss for Imbalanced Visual Classification (ICCV, 2021)

This is the official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch. The code heavily relies on LDAM-DRW.

Requirements

All codes are written by Python 3.7, and 'requirements.txt' contains required Python packages. To install requirements:

pip install -r requirements.txt

Dataset

Create 'data/' directory and download original data in the directory to make imbalanced versions.

  • Imbalanced CIFAR. The original data will be downloaded and converted by imbalancec_cifar.py.
  • Imbalanced Tiny ImageNet. Download the data first, and convert them by imbalance_tinyimagenet.py.
  • The paper also reports results on iNaturalist 2018. We will update the code for iNaturalist 2018 later.

Training

We provide several training examples:

CIFAR

  • CE baseline (CIFAR-100, long-tailed imabalance ratio of 100)
python cifar_train.py --dataset cifar100 --loss_type CE --train_rule None --imb_type exp --imb_factor 0.01 --epochs 200 --num_classes 100 --gpu 0
  • IB (CIFAR-100, long-tailed imabalance ratio of 100)
python cifar_train.py --dataset cifar100 --loss_type IB --train_rule IBReweight --imb_type exp --imb_factor 0.01 --epochs 200 --num_classes 100 --start_ib_epoch 100 --gpu 0
  • IB + CB (CIFAR-100, long-tailed imabalance ratio of 100)
python cifar_train.py --dataset cifar100 --loss_type IB --train_rule CBReweight --imb_type exp --imb_factor 0.01 --epochs 200 --num_classes 100 --start_ib_epoch 100 --gpu 0
  • IB + Focal (CIFAR-100, long-tailed imabalance ratio of 100)
python cifar_train.py --dataset cifar100 --loss_type IBFocal --train_rule IBReweight --imb_type exp --imb_factor 0.01 --epochs 200 --num_classes 100 --start_ib_epoch 100 --gpu 0

Tiny ImageNet

  • CE baseline (long-tailed imabalance ratio of 100)
python tinyimage_train.py --dataset tinyimagenet -a resnet18 --loss_type CE --train_rule None --imb_type exp --imb_factor 0.01 --epochs 100 --lr 0.1  --num_classes 200
  • IB (long-tailed imabalance ratio of 100)
python tinyimage_train.py --dataset tinyimagenet -a resnet18 --loss_type IB --train_rule IBReweight --imb_type exp --imb_factor 0.01 --epochs 100 --lr 0.1  --num_classes 200 --start_ib_epoch 50

Citation

If you find our paper and repo useful, please cite our paper

Owner
Seulki Park
PhD Student in Electrical and Computer Engineering at Seoul National University, Korea
Seulki Park
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
An easy-to-use app to visualise attentions of various VQA models.

Ask Me Anything: A tool for visualising Visual Question Answering (AMA) An easy-to-use app to visualise attentions of various VQA models. Please click

Apoorve 37 Nov 13, 2022
Embeds a story into a music playlist by sorting the playlist so that the order of the music follows a narrative arc.

playlist-story-builder This project attempts to embed a story into a music playlist by sorting the playlist so that the order of the music follows a n

Dylan R. Ashley 0 Oct 28, 2021
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Continuous Wasserstein-2 Benchmark This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Co

Alexander 22 Dec 12, 2022
Code for the CVPR2022 paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity"

Introduction This is an official release of the paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity" (arxiv link). Abstrac

Leo 21 Nov 23, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching

Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching This is our attempt of the shared task on Quan

Manav Nitin Kapadnis 12 Jul 08, 2022
IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
This library is a location of the LegacyLogger for PyTorch Lightning.

neptune-contrib Documentation See neptune-contrib documentation site Installation Get prerequisites python versions 3.5.6/3.6 are supported Install li

neptune.ai 26 Oct 07, 2021
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022