Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Overview

Face2webtoon

merge_from_ofoct (2)

merge_from_ofoct (1)

Introduction

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

Webtoon Dataset

data

I used anime face detector. Since face detector is not that good at detecting the faces from webtoon, I could gather only 1400 webtoon face images.

Baseline 0(U-GAT-IT)

I used U-GAT-IT official pytorch implementation. U-GAT-IT is GAN for unpaired image to image translation. By using CAM attention module and adaptive layer instance normalization, it performed well on image translation where considerable shape deformation is required, on various hyperparameter settings. Since shape is very different between two domain, I used this model.

For face data, i used AFAD-Lite dataset from https://github.com/afad-dataset/tarball-lite.

good

gif1

Some results look pretty nice, but many result have lost attributes while transfering.

Missing of Attributes

Gender

gender

Gender information was lost.

Glasses

glasses

A model failed to generate glasses in the webtoon faces.

Result Analysis

To analysis the result, I seperated webtoon dataset to 5 different groups.

group number group name number of data
0 woman_no_glasses 1050
1 man_no_glasses 249
2 man_glasses 17->49
3 woman_glasses 15->38

Even after I collected more data for group 2 and 3, there are severe imbalances between groups. As a result, model failed to translate to few shot groups, for example, group 2 and 3.

U-GAT-IT + Few Shot Transfer

Few shot transfer : https://arxiv.org/abs/2007.13332

Paper review : https://yun905.tistory.com/48

In this paper, authors successfully transfered the knowledge from group with enough data to few shot groups which have only 10~15 data. First, they trained basic model, and made branches for few shot groups.

Basic model

For basic model, I trained U-GAT-IT between only group 0.

basic_model1 basic_model2

Baseline 1 (simple fine-tuning)

For baseline 1, I freeze the bottleneck layers of generator and tried to fine-tune the basic model. I used 38 images(both real/fake) of group 1,2,3, and added 8 images of group 0 to prevent forgetting. I trained for 200k iterations.

1

Model randomly mapped between groups.

Baseline 2 (group classification loss + selective backprop)

0

I attached additional group classifier to discriminator and added group classification loss according to original paper. Images of group 0,1,2,3 were feeded sequentially, and bottleneck layers of generator were updated for group 0 only.

With limited data, bias of FID score is too big. Instead, I used KID

KID*1000
25.95

U-GAT-IT + group classification loss + adaptive discriminator augmentation

ADA is very useful data augmentation method for training GAN with limited data. Although original paper only handles unconditional GANs, I applied ADA to U-GAT-IT which is conditional GAN. Augmentation was applied to both discriminators, because it is expected that preventing the discriminator of the face domain from overfitting would improve the performance of the face generator and therefore the cycle consistency loss would be more meaningful. Only pixel blitting and geometric transformation have been implemented, as the effects of other augmentation methods are minimal according to paper. The rest will be implemented later.

To achieve better result, I changed face dataset to more diverse one(CelebA).

merge_from_ofoct (2)

merge_from_ofoct (1)

image

ADA makes training longer. It took 8 days with single 2070 SUPER, but did not converged completely.

KID*1000
12.14

Start training

python main.py --dataset dataset_name --useADA True --group 0,1,2,3 --use_grouploss True --neptune False

If --neptune is True, the experiment is transmitted to neptune ai, which is experiment management tool. You must set your API token. --group 0,1,3 make group 2 out of training.

Owner
이상윤
이상윤
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
Can we learn gradients by Hamiltonian Neural Networks?

Can we learn gradients by Hamiltonian Neural Networks? This project was carried out as part of the Optimization for Machine Learning course (CS-439) a

2 Aug 22, 2022
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

Ming 74 Dec 28, 2022
Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

One model to speak them all 🌎 Audio Language Text ▷ Chinese 人人生而自由,在尊严和权利上一律平等。 ▷ English All human beings are born free and equal in dignity and rig

Mutian He 60 Nov 14, 2022
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry

SynergyNet 3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry Cho-Ying Wu, Qiangeng Xu, Ulrich Neumann, CGIT Lab at Unive

Cho-Ying Wu 239 Jan 06, 2023
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022