Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

Related tags

Deep LearningDU-VAE
Overview

DU-VAE

This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

Acknowledgements

Our code is mainly based on this public code. Very thanks for its authors.

Requirements

  • Python >= 3.6
  • Pytorch >= 1.5.0

Data

Datastes used in this paper can be downloaded in this link, with the specific license if that is not based on MIT License.

Usage

Example script to train DU-VAE on text data:

python text.py --dataset yelp \
 --device cuda:0  \
--gamma 0.5 \
--p_drop 0.2 \
--delta_rate 1 \
--kl_start 0 \
--warm_up 10

Example script to train DU-VAE on image data:

python3.6 image.py --dataset omniglot \
 --device cuda:3 \
--kl_start 0 \
--warm_up 10 \
--gamma 0.5  \
--p_drop 0.1 \
--delta_rate 1 \
--dataset omniglot

Example script to train DU-IAF, a variant of DU-VAE, on text data:

python3.6 text_IAF.py --device cuda:2 \
--dataset yelp \
--gamma 0.6 \
--p_drop 0.3 \
--delta_rate 1 \
--kl_start 0 \
--warm_up 10 \
--flow_depth 2 \
--flow_width 60

Example script to train DU-IAF on image data:

python3.6 image_IAF.py --dataset omniglot\
  --device cuda:3 \
--kl_start 0 \
--warm_up 10 \
--gamma 0.5 \
 --p_drop 0.15\
 --delta_rate 1 \
--flow_depth 2\
--flow_width 60 

Here,

  • --dataset specifies the dataset name, currently it supports synthetic, yahoo, yelp for text.py and omniglot for image.py.
  • --kl_start represents starting KL weight (set to 1.0 to disable KL annealing)
  • --warm_up represents number of annealing epochs (KL weight increases from kl_start to 1.0 linearly in the first warm_up epochs)
  • --gamma represents the parameter $\gamma$ in our Batch-Normalization approach, which should be more than 0 to use our model.
  • --p_drop represents the parameter $1-p$ in our Dropout approach, which denotes the percent of data to be ignored and should be ranged in (0,1).
  • --delta_rate represents the hyper-parameter $\alpha$ to controls the min value of the variance $\delta^2$
  • --flow_depth represents number of MADE layers used to implement DU-IAF.
  • --flow_wdith controls the hideen size in each IAF block, where we set the product between the value and the dimension of $z$ as the hidden size. For example, when we set --flow width 60 with the dimension of $z$ as 32, the hidden size of each IAF block is 1920.

Reference

If you find our methods or code helpful, please kindly cite the paper:

@inproceedings{shen2021regularizing,
  title={Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness},
  author={Shen, Dazhong  and Qin, Chuan and Wang, Chao and Zhu, Hengshu and Chen, Enhong and Xiong, Hui},
  booktitle={Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI-21)},
  year={2021}
}
Owner
Dazhong Shen
Dazhong Shen
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
DanceTrack: Multiple Object Tracking in Uniform Appearance and Diverse Motion

DanceTrack DanceTrack is a benchmark for tracking multiple objects in uniform appearance and diverse motion. DanceTrack provides box and identity anno

260 Dec 28, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

arXiv Dual Contrastive Learning Adversarial Generative Networks (DCLGAN) We provide our PyTorch implementation of DCLGAN, which is a simple yet powerf

119 Dec 04, 2022
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference

LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained

Facebook Research 504 Jan 02, 2023
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

117 Dec 27, 2022
Message Passing on Cell Complexes

CW Networks This repository contains the code used for the papers Weisfeiler and Lehman Go Cellular: CW Networks (Under review) and Weisfeiler and Leh

Twitter Research 108 Jan 05, 2023
A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022