Autonomous Perception: 3D Object Detection with Complex-YOLO

Overview

Autonomous Perception: 3D Object Detection with Complex-YOLO

Gif of 50 frames of darknet

LiDAR object detection with Complex-YOLO takes four steps:

  1. Computing LiDAR point-clouds from range images.
  2. Transforming the point-cloud to a Bird's Eye View using the Point Cloud Library (PCL).
  3. Using both Complex-YOLO Darknet and Resnet to predict 3D dectections on transformed LiDAR images.
  4. Evaluating the detections based Precision and Recall.

Complex-Yolo Pipeline

Complex-Yolo is both highly accurate and highly performant in production:

Complex-Yolo Performance

Computing LiDAR Point-Clouds from Waymo Range Images

Waymo uses multiple sensors including LiDAR, cameras, radar for autonomous perception. Even microphones are used to help detect ambulance and police sirens.

Visualizing LiDAR Range and Intensity Channels

LiDAR visualization 1

Roof-mounted "Top" LiDAR rotates 360 degrees with a vertical field of vision or ~20 degrees (-17.6 degrees to +2.4 degrees) with a 75m limit in the dataset.

LiDAR data is stored as a range image in the Waymo Open Dataset. Using OpenCV and NumPy, we filtered the "range" and "intensity" channels from the image, and converted the float data to 8-bit unsigned integers. Below is a visualization of two video frames, where the top half is the range channel, and the bottom half is the intensity for each visualization:

LiDAR visualization 2

Visualizing th LiDAR Point-cloud

There are 64 LEDs in Waymo's top LiDAR sensor. Limitations of 360 LiDAR include the space between beams (aka resolution) widening with distance from the origin. Also the car chasis will create blind spots, creating the need for Perimeter LiDAR sensors to be inlcuded on the sides of the vehicles.

We leveraged the Open3D library to make a 3D interactive visualization of the LiDAR point-cloud. Commonly visible features are windshields, tires, and mirros within 40m. Beyond 40m, cars are like slightly rounded rectangles where you might be able to make ou the windshield. Further away vehicles and extremely close vehicles typically have lower resolution, as well as vehicles obstructing the detection of other vehicles.

10 Vehicles Showing Different Types of LiDAR Interaction:

  1. Truck with trailer - most of truck is high resolution visible, but part of the trailer is in the 360 LiDAR's blind-spot.
  2. Car partial in blind spot, back-half isn't picked up well. This car blocks the larges area behind it from being detected by the LiDAR.
  3. Car shape is higly visible, where you can even see the side-mirrors and the LiDAR passing through the windshield.
  4. Car driving in other lane. You can see the resolution of the car being lower because the further away the 64 LEDs project the lasers, the futher apart the points of the cloud will be. It is also obstructed from some lasers by Car 2.
  5. This parked is unobstructed, but far enough away where it's difficult to make our the mirrors or the tires.
  6. Comparing this car to Car 3, you can see where most of the definition is either there or slightly worse, because it is further way.
  7. Car 7 is both far away and obstructed, so you can barely tell it's a car. It's basically a box with probably a windshield.
  8. Car 8 is similar to Car 6 on the right side, but obstructed by Car 6 on the left side.
  9. Car 9 is at the limit of the LiDAR's dataset's perception. It's hard to tell it's a car.
  10. Car 10 is at the limit of the LiDAR's perception, and is also obstructed by car 8.

Transforming the point-cloud to a Bird's Eye View using the Point Cloud Library

Convert sensor coordinates to Bird's-Eye View map coordinates

The birds-eye view (BEV) of a LiDAR point-cloud is based on the transformation of the x and y coordinates of the points.

BEV map properties:

  • Height:

    H_{i,j} = max(P_{i,j} \cdot [0,0,1]T)

  • Intensity:

    I_{i,j} = max(I(P_{i,j}))

  • Density:

    D_{i,j} = min(1.0,\ \frac{log(N+1)}{64})

P_{i,j} is the set of points that falls into each cell, with i,j as the respective cell coordinates. N_{i,j} refers to the number of points in a cell.

Compute intensity layer of the BEV map

We created a BEV map of the "intensity" channel from the point-cloud data. We identified the top-most (max height) point with the same (x,y)-coordinates from the point-cloud, and assign the intensity value to the corresponding BEV map point. The data was normalized and outliers were removed until the features of interest were clearly visible.

Compute height layer of the BEV map

This is a visualization of the "height" channel BEV map. We sorted and pruned point-cloud data, normalizing the height in each BEV map pixel by the difference between max. and min.

Model-based Object Detection in BEV Image

We used YOLO3 and Resnet deep-learning models to doe 3D Object Detection. Complex-YOLO: Real-time 3D Object Detection on Point Clouds and Super Fast and Accurate 3D Object Detection based on 3D LiDAR Point Clouds.

Extract 3D bounding boxes from model response

The models take a three-channel BEV map as an input, and predict the class about coordinates of objects (vehicles). We then transformed these BEV coordinates back to the vehicle coordinate-space to draw the bounding boxes in both images.

Transforming back to vehicle space

Below is a gif the of detections in action: Results from 50 frames of resnet detection

Performance Evaluation for Object Detection

Compute intersection-over-union between labels and detections

Based on the labels within the Waymo Open Dataset, your task is to compute the geometrical overlap between the bounding boxes of labels and detected objects and determine the percentage of this overlap in relation to the area of the bounding boxes. A default method in the literature to arrive at this value is called intersection over union, which is what you will need to implement in this task.

After detections are made, we need a set of metrics to measure our progress. Common classification metrics for object detection include:

TP, FN, FP

  • TP: True Positive - Predicts vehicle or other object is there correctly
  • TN: True Negative - Correctly predicts vehicle or object is not present
  • FP: False Positive - Dectects object class incorrectly
  • FN: False Negative - Didn't detect object class when there should be a dectection

One popular method of making these determinations is measuring the geometric overlap of bounding boxes vs the total area two predicted bounding boxes take up in an image, or th Intersecion over Union (IoU).

IoU formula

IoU for Complex-Yolo

Classification Metrics Based on Precision and Recall

After all the LiDAR and Camera data has been transformed, and the detections have been predicted, we calculate the following metrics for the bounding box predictions:

Formulas

  • Precision:

    \frac{TP}{TP + FP}

  • Recall:

    \frac{TP}{TP + FN}

  • Accuracy:

    \frac{TP + TN}{TP + TN + FP + FN}

  • Mean Average Precision:

    \frac{1}{n} \sum_{Recall_{i}}Precision(Recall_{i})

Precision and Recall Results Visualizations

Results from 50 frames: Results from 50 frames

Precision: .954 Recall: .921

Complex Yolo Paper

Owner
Thomas Dunlap
Machine Learning Engineer and Data Scientist with a focus on deep learning, computer vision, and robotics.
Thomas Dunlap
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
Atif Hassan 103 Dec 14, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022