Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Overview

Segmentation from Natural Language Expressions

This repository contains the Caffe reimplementation of the following paper:

  • R. Hu, M. Rohrbach, T. Darrell, Segmentation from Natural Language Expressions. in arXiv:1603.06180, 2016. (PDF)
@article{hu2016segmentation,
  title={Segmentation from Natural Language Expressions},
  author={Hu, Ronghang and Rohrbach, Marcus and Darrell, Trevor},
  journal={arXiv preprint arXiv:1603.06180},
  year={2016}
}

Project Page: http://ronghanghu.com/text_objseg

Installation

  1. Install Caffe following the instructions here.
  2. Download this repository or clone with Git, and then cd into the root directory of the repository.

Training and evaluation on ReferIt Dataset

Download dataset and VGG network

Download ReferIt dataset:

./referit/referit-dataset/download_referit_dataset.sh

Download the caffemodel for VGG-16 network parameters trained on ImageNET 1000 classes.

Training

You may need to add the repository root directory to Python's module path:

export PYTHONPATH=/path/to/text_objseg_caffe/:$PYTHONPATH

Build training batches for bounding boxes:

python referit/build_training_batches_det.py

Build training batches for segmentation:

python referit/build_training_batches_seg.py

Configure the config.py file in the directory det_model and train the language-based bounding box localization model:

python det_model/train_det_model.py

Configure the config.py file in the directory seg_low_res_model and train the low resolution language-based segmentation model (from the previous bounding box localization model):

python seg_low_res_model/train_low_res_model.py

Configure the config.py file in the directory seg_model and train the high resolution language-based segmentation model (from the previous low resolution segmentation model):

python seg_model/train_seg_model.py

Evaluation

You may need to add the repository root directory to Python's module path:

export PYTHONPATH=path/to/text_objseg_caffe:$PYTHONPATH

Configure the test_config.py file in the directory seg_model and run evaluation for the high resolution language-based segmentation model:

python seg_model/test_seg_model.py

This should reproduce the results in the paper. You may also evaluate the language-based bounding box localization model:

python det_model/test_det_model.py

The results can be compared to this paper.

Demo

There is a demo that you can try! Run the demo in ./demo/text_objseg_demo.ipynb with Jupyter Notebook (IPython Notebook).

Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

Junjie Hu 13 Dec 10, 2022
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

JugLab 88 Dec 25, 2022
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

449 Dec 27, 2022
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

James Lin 101 Dec 13, 2022
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.

pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj

Adrian Edwards 290 Jan 09, 2023
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
A Marvelous ChatBot implement using PyTorch.

PyTorch Marvelous ChatBot [Update] it's 2019 now, previously model can not catch up state-of-art now. So we just move towards the future a transformer

JinTian 223 Oct 18, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196

img_sussifier A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196 Examples How to use install python pip i

41 Sep 30, 2022