[ICCV2021] Learning to Track Objects from Unlabeled Videos

Related tags

Deep LearningUSOT
Overview

Unsupervised Single Object Tracking (USOT)

🌿 Learning to Track Objects from Unlabeled Videos

Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang

2021 IEEE/CVF International Conference on Computer Vision (ICCV)

Introduction

This repository implements unsupervised deep tracker USOT, which learns to track objects from unlabeled videos.

Main ideas of USOT are listed as follows.

  • Coarsely discovering moving objects from videos, with pseudo boxes precise enough for bbox regression.
  • Training a naive Siamese tracker from single-frame pairs, then gradually extending it to longer temporal spans.
  • Following cycle memory training paradigm, enabling unsupervised tracker to update online.

Results

Results of USOT and USOT* on recent tracking benchmarks.

Model VOT2016
EAO
VOT2018
EAO
VOT2020
EAO
LaSOT
AUC (%)
TrackingNet
AUC (%)
OTB100
AUC (%)
USOT 0.351 0.290 0.222 33.7 59.9 58.9
USOT* 0.402 0.344 0.219 35.8 61.5 57.4

Raw result files can be found in folder result from Google Drive.

Tutorial

Environments

The environment we utilize is listed as follows.

  • Preprocessing: Pytorch 1.1.0 + CUDA-9.0 / 10.0 (following ARFlow)
  • Train / Test / Eval: Pytorch 1.7.1 + CUDA-10.0 / 10.2 / 11.1

If you have problems for preprocessing, you can actually skip it by downloading off-the-shelf preprocessed materials.

Preparations

Assume the project root path is $USOT_PATH. You can build an environment for development with the provided script, where $CONDA_PATH denotes your anaconda path.

cd $USOT_PATH
bash ./preprocessing/install_model.sh $CONDA_PATH USOT
source activate USOT && export PYTHONPATH=$(pwd)

You can revise the CUDA toolkit version for pytorch in install_model.sh (by default 10.0).

Test and Eval

First, we provide both models utilized in our paper (USOT.pth and USOT_star.pth). You can download them in folder snapshot from Google Drive, and place them in $USOT_PATH/var/snapshot.

Next, you can link your wanted benchmark dataset (e.g. VOT2018) to $USOT_PATH/datasets_test as follows. The ground truth json files for some benchmarks (e.g VOT2018.json) can be downloaded in folder test from Google Drive, and placed also in $USOT_PATH/datasets_test.

cd $USOT_PATH && mkdir datasets_test
ln -s $your_benchmark_path ./datasets_test/VOT2018

After that, you can test the tracker on these benchmarks (e.g. VOT2018) as follows. The raw results will be placed in $USOT_PATH/var/result/VOT2018/USOT.

cd $USOT_PATH
python -u ./scripts/test_usot.py --dataset VOT2018 --resume ./var/snapshot/USOT_star.pth

The inference result can be evaluated with pysot-toolkit. Install pysot-toolkit before evaluation.

cd $USOT_PATH/lib/eval_toolkit/pysot/utils
python setup.py build_ext --inplace

Then the evaluation can be conducted as follows.

cd $USOT_PATH
python ./lib/eval_toolkit/bin/eval.py --dataset_dir datasets_test \
        --dataset VOT2018 --tracker_result_dir var/result/VOT2018 --trackers USOT

Train

First, download the pretrained backbone in folder pretrain from Google Drive into $USOT_PATH/pretrain. Note that USOT* and USOT are respectively trained from imagenet_pretrain.model and moco_v2_800.model.

Second, preprocess the raw datasets with the paradigm of DP + Flow. Refer to $USOT_PATH/preprocessing/datasets_train for details.

In fact, we have provided two shortcuts for skipping this preprocessing procedure.

  • You can directly download the generated pseudo box files (e.g. got10k_flow.json) in folder train/box_sample_result from Google Drive, and place them into the corresponding dataset preprocessing path (e.g. $USOT_PATH/preprocessing/datasets_train/got10k), in order to skip the box generation procedure.
  • You can directly download the whole cropped training dataset (e.g. got10k_flow.tar) in dataset folder from Google Drive (Coming soon) (e.g. train/GOT-10k), which enables you to skip all procedures in preprocessing.

Third, revise the config file for training as $USOT_PATH/experiments/train/USOT.yaml. Very important options are listed as follows.

  • GPUS: the gpus for training, e.g. '0,1,2,3'
  • TRAIN/PRETRAIN: the pretrained backbone, e.g. 'imagenet_pretrain.model'
  • DATASET: the folder for your cropped training instances and their pseudo annotation files, e.g. PATH: '/data/got10k_flow/crop511/', ANNOTATION: '/data/got10k_flow/train.json'

Finally, you can start the training phase with the following script. The training checkpoints will also be placed automatically in $USOT_PATH/var/snapshot.

cd $USOT_PATH
python -u ./scripts/train_usot.py --cfg experiments/train/USOT.yaml --gpus 0,1,2,3 --workers 32

We also provide a onekey script for train, test and eval.

cd $USOT_PATH
python ./scripts/onekey_usot.py --cfg experiments/train/USOT.yaml

Citation

If any parts of our paper and codes are helpful to your work, please generously citing:

@inproceedings{zheng-iccv2021-usot,
   title={Learning to Track Objects from Unlabeled Videos},
   author={Jilai Zheng and Chao Ma and Houwen Peng and Xiaokang Yang},
   booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
   year={2021}
}

Reference

We refer to the following repositories when implementing our unsupervised tracker. Thanks for their great work.

Contact

Feel free to contact me if you have any questions.

Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

jemmy li 121 Sep 26, 2022
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Beckham 0 Jul 20, 2022
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea

Computer Vision Group, Albert-Ludwigs-Universität Freiburg 38 Dec 13, 2022
This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

215355 1 Dec 16, 2021
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
Benchmark VAE - Library for Variational Autoencoder benchmarking

Documentation pythae This library implements some of the most common (Variational) Autoencoder models. In particular it provides the possibility to pe

1.1k Jan 02, 2023
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more

PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe

Ross Wightman 22.9k Jan 09, 2023
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022