Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Overview

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*.

Visually-grounded spoken language datasets can enable models to learn cross-modal correspondences with very weak supervision. However, modern audio-visual datasets contain biases that undermine the real-world performance of models trained on that data. We introduce Spoken ObjectNet, which is designed to remove some of these biases and provide a way to better evaluate how effectively models will perform in real-world scenarios. This dataset expands upon ObjectNet, which is a bias-controlled image dataset that features similar image classes to those present in ImageNet.

*Note: please see the ArXiv version for additional results on the test set.

Setup

  1. Clone this module and any submodules: git clone --recurse-submodules [email protected]:iapalm/Spoken-ObjectNet.git
  2. Follow the directions in data.md to set up ObjectNet images and the Spoken ObjectNet-50k corpus
  3. This code was tested with PyTorch 1.9 with CUDA 10.2 and Python 3.8.8.
  4. To train the models with the code as-is, we use 2 GPUs with 11 Gb of memory. A single GPU can be used, but the batch size or other parameters should be reduced.
  5. Note about the speed of this code: This code will work as-is on the Spoken ObjectNet audio captions, but the speed could be greatly improved. A main bottleneck is the resampling of the audio wav files from 48 kHz to 16 kHz, which is done with librosa here. We suggest to pre-process the audio files into the desired format first, and then remove this line or the on-the-fly spectrogram conversion entirely. We estimate the speed will improve 5x.
  6. On our servers, the zero-shot evaluation takes around 20-30 minutes and training takes around 4-5 days. As mentioned in the previous point, this could be improved with audio pre-processing.

Running Experiments

We support 3 experiments that can be used as baselines for future work:

  • (1) Zero-shot evaluation of the ResDAVEnet-VQ model trained on Places-400k [2].
  • (2) Fine-tuning the ResDAVEnet-VQ model trained on Places-400k on Spoken ObjectNet with a frozen image branch .
  • (3) Training the ResDAVEnet-VQ model from scratch on Spoken ObjectNet with a frozen image branch.
  • Note: fine-tuning the image branch on Spoken ObjectNet is not permitted, but fine-tuning the audio branch is allowed.

Zero-shot transfer from Places-400k

  • Download and extract the directory containing the model weights from this link. Keep the folder named RDVQ_00000 and move it to the exps directory.
  • In scripts/train.sh, change data_dt to data/Spoken-ObjectNet-50k/metadata/SON-test.json to evaluate on the test set instead of the validation set.
  • Run the following command for zero-shot evaluation: source scripts/train.sh 00000 RDVQ_00000 "--resume True --mode eval"
  • The results are printed in exps/RDVQ_00000_transfer/train.out

Fine-tune the model from Places-400k

  • Download and extract the directory containing the args.pkl file which specifies the fine-tuning arguments. The directory at this link contains the args.pkl file as well as the model weights.
  • The model weights of the fine-tuned model are provided for easier evaluation. Run the following command to evaluate the model using those weights: source scripts/train.sh 00000 RDVQ_00000_finetune "--resume True --mode eval"
  • Otherwise, to fine-tune the model yourself, first move the model weights to a new folder model_dl, then make a new folder model to save the new weights, and then run the following command: source scripts/train.sh 00000 RDVQ_00000_finetune "--resume True". This still require the args.pkl file mentioned previously.
  • Plese note the value of data_dt in scripts/train.sh. The code saves the best performing model during training, which is why it should be set to the validation set during training. During evaluation, it loads the best performing model, which is why it should be set to the test set during evaluation.

Train the model from scratch on Spoken ObjectNet

  • Run the following command to train the model from scratch: source scripts/train.sh 00000 RDVQ_scratch_frozen "--lr 0.001 --freeze-image-model True"
  • The model weights can be evaulated with source scripts/train.sh 00000 RDVQ_scratch_frozen "--resume True --mode eval"
  • We also provide the trained model weights at this link.
  • Plese note the value of data_dt in scripts/train.sh. The code saves the best performing model during training, which is why it should be set to the validation set during training. During evaluation, it loads the best performing model, which is why it should be set to the test set during evaluation.

Contact

If You find any problems or have any questions, please open an issue and we will try to respond as soon as possible. You can also try emailing the first corresponding author.

References

[1] Palmer, I., Rouditchenko, A., Barbu, A., Katz, B., Glass, J. (2021) Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset. Proc. Interspeech 2021, 3650-3654, doi: 10.21437/Interspeech.2021-245

[2] David Harwath*, Wei-Ning Hsu*, and James Glass. Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech. Proc. International Conference on Learning Representations (ICLR), 2020

Spoken ObjectNet - Bibtex:

@inproceedings{palmer21_interspeech,
  author={Ian Palmer and Andrew Rouditchenko and Andrei Barbu and Boris Katz and James Glass},
  title={{Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset}},
  year=2021,
  booktitle={Proc. Interspeech 2021},
  pages={3650--3654},
  doi={10.21437/Interspeech.2021-245}
}
Owner
Ian Palmer
Ian Palmer
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

Google 702 Jan 02, 2023
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 04, 2023
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The SpeechBrain Toolkit SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch. The goal is to create a single, flexible, and us

SpeechBrain 5.1k Jan 02, 2023
An educational AI robot based on NVIDIA Jetson Nano.

JetBot Looking for a quick way to get started with JetBot? Many third party kits are now available! JetBot is an open-source robot based on NVIDIA Jet

NVIDIA AI IOT 2.6k Dec 29, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
Demo notebooks for Qiskit application modules demo sessions (Oct 8 & 15):

qiskit-application-modules-demo-sessions This repo hosts demo notebooks for the Qiskit application modules demo sessions hosted on Qiskit YouTube. Par

Qiskit Community 46 Nov 24, 2022
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:

Csordás Róbert 57 Nov 21, 2022
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022