InterfaceGAN++: Exploring the limits of InterfaceGAN

Overview

InterfaceGAN++: Exploring the limits of InterfaceGAN

Authors: Apavou Clément & Belkada Younes

Python 3.8 pytorch 1.10.2 sklearn 0.21.2

Open In Colab

From left to right - Images generated using styleGAN and the boundaries Bald, Blond, Heavy_Makeup, Gray_Hair

This the the repository to a project related to the Introduction to Numerical Imaging (i.e, Introduction à l'Imagerie Numérique in French), given by the MVA Masters program at ENS-Paris Saclay. The project and repository is based on the work from Shen et al., and fully supports their codebase. You can refer to the original README) to reproduce their results.

Introduction

In this repository, we propose an approach, termed as InterFaceGAN++, for semantic face editing based on the work from Shen et al. Specifically, we leverage the ideas from the previous work, by applying the method for new face attributes, and also for StyleGAN3. We qualitatively explain that moving the latent vector toward the trained boundaries leads in many cases to keeping the semantic information of the generated images (by preserving its local structure) and modify the desired attribute, thus helps to demonstrate the disentangled property of the styleGANs.

🔥 Additional features

  • Supports StyleGAN2 & StyleGAN3 on the classic attributes
  • New attributes (Bald, Gray hair, Blond hair, Earings, ...) for:
    • StyleGAN
    • StyleGAN2
    • StyleGAN3
  • Supports face generation using StyleGAN3 & StyleGAN2

The list of new features can be found on our attributes detection classifier repository

🔨 Training an attribute detection classifier

We use a ViT-base model to train an attribute detection classifier, please refer to our classification code if you want to test it for new models. Once you retrieve the trained SVM from this repo, you can directly move them in this repo and use them.

Generate images using StyleGAN & StyleGAN2 & StyleGAN3

We did not changed anything to the structure of the old repository, please refer to the previous README. For StyleGAN

🎥 Get the pretrained StyleGAN

We use the styleGAN trained on ffhq for our experiments, if you want to reproduce them, run:

wget -P interfacegan/models/pretrain https://www.dropbox.com/s/qyv37eaobnow7fu/stylegan_ffhq.pth

🎥 Get the pretrained StyleGAN2

We use the styleGAN2 trained on ffhq for our experiments, if you want to reproduce them, run:

wget -P models/pretrain https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan2/versions/1/files/stylegan2-ffhq-1024x1024.pkl 

🎥 Get the pretrained StyleGAN3

We use the styleGAN3 trained on ffhq for our experiments, if you want to reproduce them, run:

wget -P models/pretrain https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-ffhq-1024x1024.pkl 

The pretrained model should be copied at models/pretrain. If not, move the pretrained model file at this directory.

🎨 Run the generation script

If you want to generate 10 images using styleGAN3 downloaded before, run:

python generate_data.py -m stylegan3_ffhq -o output_stylegan3 -n 10

The arguments are exactly the same as the arguments from the original repository, the code supports the flag -m stylegan3_ffhq for styleGAN3 and -m stylegan3_ffhq for styleGAN2.

✏️ Edit generated images

You can edit the generated images using our trained boundaries! Depending on the generator you want to use, make sure that you have downloaded the right model and put them into models/pretrain.

Examples

Please refer to our interactive google colab notebook to play with our models by clicking the following badge:

Open In Colab

StyleGAN

Example of generated images using StyleGAN and moving the images towards the direction of the attribute grey hair:

original images generated with StyleGAN

grey hair version of the images generated with StyleGAN

StyleGAN2

Example of generated images using StyleGAN2 and moving the images towards the opposite direction of the attribute young:

original images generated with StyleGAN2

non young version of the images generated with StyleGAN2

StyleGAN3

Example of generated images using StyleGAN3 and moving the images towards the attribute beard:

Owner
Younes Belkada
MSc Student in Mathematics - Machine Learning - Perception | M2 MVA @ ENS Paris-Saclay
Younes Belkada
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

494 Dec 29, 2022
ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa

Jie Hu 182 Dec 19, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
Tensorflow 2.x based implementation of EDSR, WDSR and SRGAN for single image super-resolution

Single Image Super-Resolution with EDSR, WDSR and SRGAN A Tensorflow 2.x based implementation of Enhanced Deep Residual Networks for Single Image Supe

Martin Krasser 1.3k Jan 06, 2023
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
It is modified Tensorflow 2.x version of Mask R-CNN

[TF 2.X] Mask R-CNN for Object Detection and Segmentation [Notice] : The original mask-rcnn uses the tensorflow 1.X version. I modified it for tensorf

Milner 34 Nov 09, 2022
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
A quantum game modeling of pandemic (QHack 2022)

Contributors: @JongheumJung, @YoonjaeChung, @GyunghunKim Abstract In the regime of a global pandemic, leaders around the world need to consider variou

Yoonjae Chung 8 Apr 03, 2022
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
Matthew Colbrook 1 Apr 08, 2022
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
Synthetic Humans for Action Recognition, IJCV 2021

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human

Gul Varol 59 Dec 14, 2022
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020